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FEYNMAN’S LOST  LECTURE 

The  Motion  of  Planets 

Around  the  Sun 

VINTAGE 



“Simple  things  have  simple  demonstrations,”  Feynman  wrote  in  his 

lecture  notes.  Then  he  crossed  out  the  second  “simple”  and  replaced 

it  with  “elementary.”  The  simple  thing  he  had  in  mind  was  Kepler’s 
first  law,  the  law  of  ellipses.  The  demonstration  he  was  about  to  present 

would  indeed  be  elementary,  in  the  sense  that  it  used  no  mathematics 

more  advanced  than  high  school  geometry,  but  it  would  be  far  from 

simple. 

To  begin  with,  Feynman  reminds  us  that  an  ellipse  is  a  kind  of 

elongated  circle  that  can  be  made  with  two  tacks,  a  string,  and  a  pencil, 
like  this: 
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Each  tack  is  at  a  point  called  a  focus  of  the  ellipse.  The  string  makes 

a  line  from  one  focus  to  a  point  on  the  ellipse  and  back  to  the  other 

focus.  The  total  length  of  the  string  stays  the  same  as  the  pencil  goes 

around  the  curve.  Here’s  a  slightly  more  proper  geometric  diagram: 

Here  F'  and  F  are  the  two  foci,  and  P  may  be  any  point  on  the  curve. 

The  distance  from  F'  to  P  and  back  to  F  is  the  same,  no  matter  where 
P  is  on  the  curve. 

Here  is  a  small  point  worth  remembering:  If  the  string  is  made  a  little 

shorter  and  the  tacks  stay  where  they  are,  we  get  another  ellipse,  inside 

this  one;  and  if  the  string  is  made  longer  while  the  tacks  stay  where 

they  are,  we  get  an  ellipse  that  lies  outside  this  one.  It  follows  that  any 

point  in  the  plane — say,  q — such  that  the  distance  from  F'  to  q  to  F  is 
less  than  the  distance  from  F'  to  P  to  F  (in  other  words,  any  point  that 
can  be  reached  by  a  shorter  string)  lies  inside  our  original  ellipse. 

Likewise,  any  point  Q  such  that  F'Q  +  QF  (another  way  of  saying  the 

distance  from  F’  to  Q  plus  the  distance  from  Q  to  F)  is  larger  than  F'P 

+  PF  (the  length  of  the  original  string)  lies  outside  our  ellipse.  Here’s 

Any  point  Q  outside  the 
ellipse  lies  on  a  bigger  ellipse, 

reached  by  a  longer  string.  Any 

point  q  inside  the  ellipse  lies  on 
a  smaller  ellipse,  reached  by  a 
shorter  string. 

a  picture  illustrating  the  idea: 

A  little  later  in  the  discussion,  Feynman  uses  this  idea,  but  he  doesn’t 
prove  it  as  we  have  just  done.  Instead  he  asks  the  students  to  work  it 
out  for  themselves. 

An  ellipse  has  another  special  property.  If  a  lightbulb  were  turned 

on  at  F,  and  if  the  inner  surface  of  the  ellipse  reflected  light  like  a 

mirror,  then  all  the  reflected  light  rays  would  come  back  together  at  F' , 
the  other  focus,  like  this: 

And  vice  versa:  all  the  light  rays  starting  at  one  focus  will  be  focused 

to  a  point  at  the  other  focus.  Feynman  cites  this  as  the  second  elementary 

property  of  the  ellipse,  and  then  he  sets  out  to  prove  that  these  two 

properties  arc  really  equivalent.  (His  strategy  here  is  to  lead  us  to  a 

more  arcane  property  of  ellipses — one  that  will  prove  indispensable later  on.) 

Picture  any  point  P  on  the  ellipse.  At  that  point  (as  at  any  point)  on 

the  ellipse  (or  any  other  curve),  there  is  a  single,  unique  straight  line 

that  just  touches  the  curve  without  penetrating  it,  like  this: 
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This  line  is  called  the  tangent  to  the  curve  at  that  point.  A  light  ray, 

mirror-reflected  from  the  curve  at  any  point,  like  this. 

t 
light  ray 

follows  the  same  path  it  would  follow  if  it  were  mirror-reflected  at  that 

point  from  the  tangent  line,  like  this: 

The  reason  that  light  reflects  from  the  curve  just  as  it  would  from 

the  tangent  line  at  the  same  point  is  that  the  tangent  indicates  the  direction 

of  the  curve  at  exactly  that  point.  If  one  starts  with  a  curve  and  its 

tangent  at  a  point, 

tangent  line 
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and  magnifies  the  picture  greatly  about  that  point,  the  curve  is  stretched 

out  to  become  much  more  nearly  equal  to  the  tangent  line: 

The  more  closely  we  look,  the  less  difference  there  is  between  the  curve 

and  its  tangent  line  at  that  point.  Thus,  if  light  is  reflected  from  a  curve 

at  a  single  point,  it  reflects  just  as  it  would  from  the  tangent  line  at  that 

point.  For  the  same  reason,  the  tangent  line  has  another  property  that 

will  be  important  to  us  later  on:  if  the  curve  is  actually  the  path  of  a 

moving  object,  the  tangent  line  shows  the  direction  of  the  object’s 
motion  at  each  point.  When  we  think  of  the  ellipse  as  the  path  followed 

by  a  planet  in  its  orbit  around  the  Sun,  the  tangent  to  the  ellipse  at  each 

point  will  be  in  the  direction  of  the  planet’s  instantaneous  velocity  at 
that  point. 

The  law  of  reflection  from  a  flat  mirror  is  that  the  ray  strikes  the 

mirror  and  is  reflected  from  it  at  the  same  angle,  like  this: 
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The  incident  ray  from  F  to  P  makes  the  same  angle  with  the  tangent 

line  at  P  as  does  the  reflected  ray,  which  goes  to  F' .  Our  job  is  to  prove 

that  this  statement  is  equivalent  to  saying  that  the  distance  F'P  plus  the 
distance  PF  is  the  same  for  any  point  P  on  the  curve. 

The  proof  involves  some  new  construction.  A  line  is  drawn  from  F' 
perpendicular  to  the  tangent  line,  like  this: 

new  line,  at  right  angle 

to  the  tangent  line 

Then  it  is  extended  the  same  distance,  to  a  point  called  G 
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Thus  the  line  F'G'  has  been  constructed  in  such  a  way  that  the  line 
tangent  to  the  ellipse  at  point  P  is  its  perpendicular  bisector.  Feynman 

calls  G'  the  image  point  of  F‘ .  What  he  means  is  that  if  the  tangent 

line  were  indeed  a  mirror,  and  if  the  point  F'  looked  at  itself  in  that 

mirror,  its  image  would  appear  to  be  at  G',  an  equal  distance  behind 
the  mirror. 

One  more  piece  of  construction  is  called  for.  Connect  the  points  G' 
and  P  with  a  straight  line: 

Now  take  a  look  at  the  two  triangles  that  have  been  formed,  one  shown 

with  solid  lines  and  the  other  with  broken  lines: 
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These  two  triangles  are  congruent,  which  means  that  they  are  identical 

in  all  respects  except  orientation.  Here’s  the  proof.  Since  we  constructed 

the  intersection  at  /  to  be  a  crossing  of  perpendicular  lines,  each  triangle 

has  one  right  angle: 

They  share  one  side  in  common: 

Feynman’s  Proof  of  the  Law  of  Ellipses  7  1 

And  another  side  of  each  was  constructed  to  have  equal  length  (remem¬ 

ber,  the  tangent  line  bisects  F'G 

Any  two  triangles  that  have  one  equal  angle  and  two  equal  sides  are 

congruent;  QED,  as  we  used  to  say  in  high  school.  That  means  all  the 

corresponding  sides  are  equal.  In  particular,  note  that  the  side  G'P  is 

equal  to  the  side  F'P: 



\  equals 
V  ;  p  this  angle 
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By  this  time,  it’s  easy  to  have  lost  sight  of  what  we're  assuming  and 

what  we  want  to  prove.  To  clarify  the  situation,  let’s  reconstruct  the 

same  diagram  from  scratch.  Start  with  two  points.  F'  and  F.  that  for 
the  moment  have  no  particular  significance.  They  are  any  two  points 

in  a  plane: •  • 
F  F 

Then  draw  any  straight  line  from  F'  in  any  direction: 

/arbitrary  line  in  any  direction 

(in  principle,  this  line  continues  to 

*  infinity) 

F  F 

Now  pick  a  point  t  on  the  line  and  draw  a  perpendicular  line  through 

it.  The  point  t  must  be  far  enough  away  from  F'  so  that  the  perpendicular 

line  doesn't  pass  between  F  and  F'\ 
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Mark  a  point  G'  on  the  arbitrary  line,  such  that  F't  is  equal  to  tG' . 
Then  the  perpendicular  we  constructed  is  the  perpendicular  bisector  of 
F'G 

f  f 

Next  draw  a  line  connecting  G'  and  F: 

F  F 
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Label  the  point  where  this  new  line  crosses  the  perpendicular  bisector 

P,  and  draw  the  line  connecting  P  to  F'\ 

G'
 

F  F 

The  two  triangles  are  congruent  as  before,  so  the  angles  F'Pt  and  G'Pt 
are  equal: 

G'
 

F  F 
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And  the  angle  G'Pt  is  also  equal  to  the  opposite  angle  where  G'PF 
crosses  the  perpendicular  bisector  (when  two  straight  lines  cross,  the 

opposite  angles  are  always  equal): 

C 

F  F 

Therefore  all  these  angles  are  equal: 
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This  means  the  perpendicular  bisector  line  would  reflect  light  from  F 

to  F'  at  the  point  P  (because,  at  that  point,  the  angles  of  incidence  and 

reflection  are  equal).  Not  only  that,  the  line  FPG'  has  a  really  spectacular 
property,  which  can  be  seen  by  going  back  to  the  congruent  triangles: 

Because  of  the  congruency  of  the  triangles,  the  length  F'P  is  the  same 

as  the  length  G'P.  It  follows  that  the  distance  from  F'  to  P  and  back 

to  F  is  the  same  as  the  distance  in  a  straight  line  from  F  to  G' .  But  that 
distance  is  just  the  length  of  the  string  we  used  to  draw  our  original 

ellipse.  In  other  words,  if  we  draw  an  ellipse  by  the  string  method,  G' 
is  the  point  we  reach  by  straightening  out  the  string: 
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So  we’ve  discovered  a  strange  and  marvelous  new  way  to  construct 

an  ellipse.  Here’s  how  it  works.  Take  two  points  in  a  plane,  F'  and  F. 

Then  take  a  string  of  constant  length  (larger  than  the  distance  F'F)  and 
connect  one  end  to  the  point  F.  Stretch  the  string  straight  in  any  direction, 

mark  the  endpoint,  and  call  it  G': 

F 

Next,  connect  F'  and  G',  and  draw  the  perpendicular  bisector  of  F'G' . 

The  perpendicular  bisector  crosses  the  line  FG'  at  a  point  P: 
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Now  let  the  point  G'  at  the  end  of  the  string  move  in  a  circle  of  constant 
radius  centered  at  F: 

ellipse  followed  by  point  P 

As  it  does  so,  the  point  P,  formed  by  the  intersection  of  FG'  and  the 

perpendicular  bisector  of  F'G',  traces  out  exactly  the  same  ellipse  that 
would  have  been  formed  using  the  same  string  with  its  ends  tacked  to 

F'  and  F\  We  know  that,  because  we’ve  proved  that  when  P  is  con¬ 

structed  in  this  way,  the  distance  FPG'  (which  goes  from  F  to  the  circle) 

is  always  equal  to  the  distance  FPF'  (which  constructs  the  ellipse): 

When  G'  moves  from 

O' i  to  G'i,  P  moves  from 

Pi  to  Pi,  tracing  out  the ellipse 
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So,  within  every  circle  there  lurks,  for  every  off-center  point,  an  off- 
center  ellipse.  However,  while  this  is  very  interesting  (and  will  later 

turn  out  to  be  very  valuable),  it’s  not  the  property  we  set  out  to  prove. 
What  we  did  set  out  to  prove  is  that  the  string-and-tacks  construction 

of  the  ellipse  is  equivalent  to  its  property  of  reflecting  light  rays  from 

F  to  F'.  What  we  have  is  an  ellipse  that  obeys  the  string-and-tacks 

construction  (that  is,  F'P  +  PF  is  the  same  all  the  way  around  the 
ellipse),  and  the  line  that  reflects  light  that  arrives  from  F  at  point  P, 

with  equal  angles  of  incidence  and  reflection,  back  to  F' .  That  reflecting 

line  happens  to  be  the  perpendicular  bisector  of  F'G 

All  that’s  left  to  prove  is  that  the  reflecting  line  at  point  P  is  also  tangent 
to  the  ellipse  at  point  P.  We  know  that  each  point  on  the  ellipse  has 

the  same  mirror-reflection  properties  as  a  tangent  line  at  that  point. 

Thus,  if  the  reflecting  line  at  P  is  also  tangent  to  the  ellipse  at  P,  then 

the  ellipse  reflects  light  from  F  to  F'  at  any  point  P,  and  we  have  proved 
that  the  two  properties  (string-and-tacks  and  reflecting  light  from  one 
focus  to  the  other)  are  equivalent. 

The  proof  is  made  by  showing  that  while  the  point  P  is  (by  construc¬ 

tion)  on  both  the  line  and  the  ellipse,  every  other  point  on  the  line  lies 

outside  the  ellipse.  That  is  the  unique  property  of  the  tangent  to  any 

curve  at  a  point:  it  touches  the  curve  without  crossing  it.  If  the  line 

crossed  the  ellipse  at  P,  part  of  the  line  would  necessarily  be  inside  it: 

/  tangent:  every  point  but  P  is nontangent:  this  segment 
is  inside 

Go  back  to  the  construction  and  pick  any  point  on  the  line  other  than 

P.  Label  that  point  Q,  and  connect  it  to  F'  and  G': 
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It  should  be  easy  to  see  now  that  the  distances  F'Q  and  G'Q  are  equal 

(PQ  is  the  perpendicular  bisector  of  F'G',  the  triangles  F'tQ  and  G'tQ 
are  congruent,  and  so  on,  QED).  Now  draw  the  line  QF: 

The  distance  from  F'  to  Q  to  F  is  equal  to  the  distance  from  G'  to  Q 

to  F;  we  know  this  because  we  know  that  the  first  steps  are  equal  ( F'Q 

and  G'Q)  and  the  second  steps  are  the  same  {QF).  Now  compare  the 

lengths  FQ  +  QG'  (solid  lines)  and  FP  +  PG‘  (broken  line): 

Obviously,  FPG'  is  shorter,  since  it’s  a  straight  line,  and  a  straight  line 

is  the  shortest  distance  between  two  points.  But  we’ve  just  shown  that 

the  solid  lines  G'QF  in  the  drawing  above  cover  the  same  distance  as 

the  solid  lines  F'QF  in  the  drawing  below,  and  likewise  for  the  broken 

lines  (for  the  broken  lines,  we  saw  that  earlier;  it’s  the  length  of  the 

string): 

We  have  proved  that  the  solid  lines  cover  a  bigger  distance  than  the 

broken  lines.  In  other  words,  if  we  wanted  to  reach  point  Q  with  a 

string  stretched  from  tacks  at  F'  and  F,  the  string  would  have  to  be 
longer  than  the  one  needed  to  reach  the  unique  point  F.  We  showed 

much  earlier  that  this  means  all  such  points  are  outside  the  ellipse.  Thus, 

the  line  is  tangent  to  the  ellipse  at  point  P.  QED. 

Speaking  of  QED,  there’s  something  particularly  interesting  in  Feyn¬ 

man’s  use  of  this  method  of  proof.  We  have  shown  in  effect  that  the 

shortest  path  from  F'  to  the  tangent  line  and  thence  to  F  is  the  path  that 

reflects  light  at  point  P.  This  is  a  special  case  of  Fermat’s  principle 
(light  always  takes  the  quickest  path  between  two  points)  and  is  closely 

related  to  Feynman's  approach  to  quantum  electrodynamics,  which  is 

also  known  as  QED  and  won  him  his  Nobel  Prize.  Fermat’s  principle 
is  a  special  case  of  the  principle  of  least  action. 

In  any  case,  Feynman  has  now  told  us  all  we’ll  need  to  know  about 
the  ellipse.  He  turns  now  to  dynamics — that  is,  forces  and  the  motions 

that  result  from  them.  The  diagram  that  Feynman  has  sketched  in  his 

lecture  notes  is  copied  directly  out  of  Newton’s  Principia.  That  much 
is  obvious  from  comparing  them: 
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j T/HK 

Feynman’s  Diagram 

JC  t 
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In  Newton’s  diagram,  S  represents  the  position  of  the  Sun  (the  “im¬ 

movable  centre  of  force”),  while  A,  B,  C,  D,  E,  and  F  are  successive 
positions,  at  equal  intervals  of  time,  of  a  planet  in  orbit  about  the  Sun. 

The  motion  of  the  planet  is  the  result  of  a  competition  between  the 

planet’s  tendency  to  move  at  constant  speed  in  a  straight  line  if  no  forces 
act  upon  it  (the  law  of  inertia)  and  the  motion  due  to  the  force  that  is 

acting  on  the  planet — that  is,  the  gravitational  force  directed  toward  the 
Sun.  In  reality,  these  combined  effects  produce  a  smoothly  curved  orbit, 

but  for  purposes  of  seventeenth-century  geometrical  analysis,  Newton 

represents  them  by  a  series  of  straight-line  segments  due  to  inertia, 
interrupted  by  sudden  changes  in  direction  due  to  impulsive  (essentially 

instantaneous)  applications  of  the  Sun’s  force.  Thus,  the  first  bit  of  the 
diagram  starts  this  way: 

B 
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In  a  certain  interval  of  time,  the  planet  would  move  from  A  to  B,  if  no 

force  were  acting  on  it.  In  the  next  equal  interval  of  time,  if  there  were 

no  force  acting,  the  planet  would  continue  the  straight  line  for  an  equal 

distance,  Be: 

S  A 

Instead,  however,  the  Sun’s  force  (which  really  acts  continuously)  is 

represented  by  an  impulse  applied  at  point  B,  which  results  in  a  compo¬ 
nent  of  motion  directed  toward  the  Sun,  BV: 
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The  motion  the  planet  would  have  without  the  force,  Be,  and  the  motion 

due  to  the  force,  BV,  are  compounded  into  a  parallelogram;  its  diagonal 

is  the  “actual”  motion: 

S 

Thus,  the  planet  “actually”  follows  the  path  ABC.  Notice  that  Cc  is 
not  directed  toward  the  Sun.  It  is  strictly  parallel  to  VB,  which  is  directed 

toward  the  Sun.  Incidentally,  all  of  these  points  lie  in  a  plane:  any  three 

points,  S,  A,  B.  define  a  plane.  The  lines  connecting  S,  A,  and  B  are 

in  the  plane.  The  segment  BV  lies  in  the  same  plane,  because  it’s  on 
the  line  BS.  The  segment  Be  is  in  the  plane,  because  it  extends  the 

line  AB.  The  line  BC  is  in  the  plane,  because  it’s  the  diagonal  of  the 
parallelogram  formed  by  BV  and  Be.  Now  the  same  procedure  is  repeated 

at  each  point,  so  that  the  next  step  looks  like  this: 

s  A 
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And  so  on.  In  the  end,  Newton  applies  the  same  analysis  to  shorter 

and  shorter  equal  time  intervals,  and  the  resulting  path,  ABCD  .... 

becomes  arbitrarily  close  to  a  smooth  orbit,  on  which  both  inertia  and 

the  Sun’s  force  act  continuously.  The  orbit  always  lies  in  a  single  plane. 
Before  shrinking  the  time  interval,  Newton  (and  Feynman)  now 

proves  that  the  planet’s  orbit  sweeps  out  equal  areas  in  equal  times.  In 
other  words,  the  triangle  SAB,  swept  out  by  the  planet  in  the  first  time 

interval,  has  the  same  area  as  the  triangle  SBC,  swept  out  in  the  second 

equal  time  interval,  and  so  on.  The  first  step,  however,  is  to  show  that 

triangle  SAB  has  the  same  area  as  SBc — a  triangle  that  would  have  been 
swept  out  in  the  second  time  interval  if  there  were  no  force  from  the 

Sun.  Here’s  what  the  three  triangles  look  like: 

Feynman’s  Proof  of  the  Law  of  Ellipses  89 

The  area  of  a  triangle  is  equal  to  one-half  its  base  times  its  altitude. 
For  example,  one  way  to  calculate  the  area  of  the  triangle  SAB  would 

be  to  choose  SA  as  the  base,  in  which  case  the  altitude  would  be  the 

perpendicular  distance  from  the  continuation  of  SA  to  the  highest  point 
on  the  triangle: 

altitude 

area  (shaded)  =  (l/2)base  x  altitude 

We  get  the  same  result  if  we  choose  SB  as  the  base  and  construct  the 

altitude  like  this: 

altitude 

area  (shaded)  “  ( l/2)base  x  altitude 

Now  we  want  to  compare  that  area  to  the  area  of  SBc. 

altitude 

S A 
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where  we’ve  chosen  SB  to  be  the  base  and  constructed  the  altitude  as 
shown.  Look  at  the  diagram  formed  by  the  construction  of  the  altitudes 

of  the  two  triangles: 

olSAB 

For  the  moment,  the  comers  where  right  angles  were  constructed  are 

labeled  x  and  y.  The  triangles  ABx  and  cBy  are  congruent,  because  they 

have  one  equal  side  and  two  equal  angles.  The  equal  sides  are  AB  and 

Be  (equal  because  they  are  the  distances  the  planet  would  go  in  equal 
time  intervals  if  there  were  no  force  from  the  Sun),  and  the  equal  angles 

are  the  right  angles  (AxB  and  Bye)  and  the  opposite  angles  made  by  the 

crossing  of  the  two  straight  lines  xBy  and  ABc.  Since  the  triangles  are 

congruent,  the  two  altitudes,  Ax  and  cy,  are  equal;  and  since  the  triangles 

SAB  and  SBc  have  the  same  base  (SB)  and  equal  altitudes,  their  areas 

are  equal.  QED.1 

'In  Feynman's  lecture,  on  page  155,  where  he  does  this  proof,  he  chose  AB  and  Be  as  the  bases 
of  the  two  triangles.  Then  they  both  have  the  same  altitude,  formed  by  extending  the  line  ABc 

downward,  and  constructing  a  perpendicular  from  it  to  S.  This  proof  and  the  one  in  the  text  work 

equally  well. 

Feynman’s  Proof  of  the  Law  of  Ellipses  9  1 

Next  (following  Newton  and  Feynman),  we  show  that  the  area  of  SBc 

(solid  lines)  is  also  equal  to  the  area  of  SBC  (broken  lines): 

The  two  triangles  have  the  same  base,  SB.  The  altitude  of  SBC  is  the 

perpendicular  distance  from  the  extension  of  SB  to  C: 

S 

The  altitude  of  SBc  is  the  perpendicular  distance  from  a  farther  extension 
of  SB  to  c: 

altitude 
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Put  the  two  diagrams  back  together,  and  remember  that  Cc  is  strictly 

parallel  to  SB: 

The  two  altitudes  are  the  perpendicular  distances  between  the  same  two 

parallel  lines,  and  are  therefore  equal.  Thus  triangles  SBC  and  SBc  have 

the  same  base  and  equal  altitudes.  They  therefore  have  the  same  areas. 

Once  again,  QED. 

Aside  from  being  very  pretty  geometry,  this  last  proof  is  very  im¬ 

portant  for  physics.  The  path  Be  would  have  been  taken  if  there  were 

no  force  at  all.  Instead,  there  is  a  force,  directed  toward  S.  That  force 

changes  the  trajectory  from  path  Be  to  path  BC,  but  it  cannot  change 

the  area  swept  out  during  a  fixed  interval  of  time.  In  later  years  (after 

Newton  but  long  before  Feynman),  this  area  would  be  understood  to 

be  proportional  to  a  quantity  called  the  angular  momentum.  In  the 

language  of  latter-day  physics,  we  have  proved  that  a  force  on  a  planet 
directed  toward  S  cannot  change  the  angular  momentum  of  the  planet 

measured  with  respect  to  5.  Although  Newton  never  used  the  term 

“angular  momentum,”  it  is  clear  that  he  understood  the  significance  of 
that  quantity,  and  the  fact  that  it  could  be  changed  only  by  a  force  along 

some  direction  not  pointing  at  the  center,  S. 

In  any  case,  we  have  now  shown  that  the  area  of  SAB  is  equal  to  the 

area  of  SBc  and  that  the  area  of  SBc  is  equal  to  the  area  of  SBC.  It 

follows  that  SAB  and  SBC  have  the  same  areas.  Looking  back  at  the 

original  diagram, 

E 

it  is  obvious  that  we  could  apply  the  same  arguments  to  successive 

triangles — SCD,  SDE,  and  so  on.  These  are  the  triangles  swept  out  by 

the  planet  in  equal  intervals  of  time.  We  have  thus  succeeded  in  proving 

Kepler’s  second  law  of  planetary  motion:  a  planet  sweeps  out  equal 
areas  in  equal  times. 

Now  that  we  can  see  where  we  have  arrived,  it  is  worthwhile  to  look 

back  and  see  how  we  got  here.  What  exactly  did  we  have  to  know  about 

dynamics — that  is,  about  forces  and  the  motions  they  produce — in  order 

to  get  this  far? 
The  answer  is  this:  We  have  used  Newton’s  first  law  (the  law  of 

inertia),  Newton’s  second  law  (any  change  of  motion  is  in  the  direction 
of  the  impressed  force),  and  the  idea  that  the  force  of  gravity  on  the 

planet  is  directed  toward  the  Sun.  Nothing  else.  For  example,  we  have 

not  used  the  idea  that  the  force  of  gravity  is  inversely  proportional  to  the 

square  of  the  distance.  So  the  inverse-square-of-the-distance  character  of 

gravity  has  nothing  to  do  with  Kepler’s  second  law.  Any  other  kind  of 
force  would  have  produced  the  same  result,  provided  only  that  the  force 

is  directed  toward  the  Sun.  What  we  have  learned  is  that  if  Newton’s 

first  and  second  laws  are  correct,  then  Kepler’s  observation  that  planets 
sweep  out  equal  areas  in  equal  times  means  that  the  gravitational  force 

on  the  planet  is  directed  toward  the  Sun. 
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You  may  wonder  exactly  where  we  used  Newton’s  first  and  second 
laws.  We  used  the  first  law  when  we  said  the  planet  would  move  from 

A  to  B  to  c  if  there  were  no  force  on  it,  and  the  second  when  we  said 

that  the  change  in  the  motion,  BV,  due  to  the  force  from  the  Sun,  is 

directed  toward  the  Sun.  Incidentally,  we  have  also  used  Newton’s  first 
corollary  to  his  laws —  that  the  net  motion  produced  by  both  tendencies 

in  the  time  interval  is  given  by  the  diagonal  of  the  parallelogram  of  the 

separate  motions  that  would  have  occurred: 

parallelogram  q  inertial  motion 

motion  due  to  force 
VlJB  \  / 

At  this  point  in  his  lecture,  Feynman  says,  ‘‘The  demonstration  that 
you  have  just  seen  is  an  exact  copy  of  one  in  the  Principia  Mathematica 

by  Newton,”  but  he  goes  on  to  say  that  he  could  not  follow  Newton’s 

arguments  any  further,  and  that  he  ‘‘cooked  up"  the  rest  of  the  demon¬ 

stration  of  the  law  of  ellipses  himself.  Before  turning  to  Feynman’s 
demonstration,  however,  let  us  interject  another  argument  that  Feynman 

has  disposed  of  earlier  in  his  lecture:  where  does  the  inverse-square-of- 

the-distance  force  of  gravity  come  in? 

The  inverse-square-of-the-distance  (from  now  on  we’ll  just  call  it  the 

R~ 2)  nature  of  gravity  is  deduced  from  Kepler’s  third  law,  which  says 
that  the  time  it  takes  a  planet  to  make  one  complete  orbit  (that  is,  one 

year  in  the  life  of  the  planet)  is  proportional  to  the  3/2  power  of  the 

planet’s  distance  from  the  Sun.  Actually,  since  the  orbits  of  the  planets 
are  ellipses  with  the  Sun  at  one  focus,  a  given  planet  is  not  always  the 
same  distance  from  the  Sun: 

The  distance  from  the  center  of  the  ellipse  (not  from  the  Sun,  which  is 

off-center)  to  the  farthest  point  on  the  ellipse  is  called  the  semimajor 
axis,  labeled  a  (the  shorter  axis,  labeled  b,  is  called  the  semiminor  axis). 

The  semimajor  axis  is  called  that  because  it  is  one-half  the  longest  axis 

of  the  ellipse.  Kepler’s  third  law  says  that  the  time  it  takes  a  planet  to 
execute  one  complete  orbit  is  proportional  to  the  3/2  power  of  a,  the 

semimajor  axis. 

Just  to  be  sure  the  meaning  of  that  statement  is  clear,  imagine  a  sun 

with  two  planets  in  orbit  around  it  (or  a  planet  with  two  moons  in  orbit 

around  it — the  same  law  would  be  obeyed): 
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The  two  arrows  show  the  distances  from  the  centers  of  the  two  ellipses 

to  the  farthest  point  of  each.  Those  distances  are  the  semimajor  axes, 

and  a2 .  Now  suppose  that  a,  is  twice  as  big  as  a,.  Then  Kepler’s 
third  law  says  that  the  time  planet  2  takes  to  make  a  complete  orbit  is 

longer  than  the  orbital  period  of  planet  1  by  a  factor  2  to  the  3/2  power: 

that  is,  take  2,  cube  it  to  get  8,  and  take  the  square  root  of  8  to  get  2.83. 

The  year  of  planet  2  is  2.83  times  longer  than  the  year  of  planet  1. 

The  law  would  still  be  true,  and  all  the  behavior  of  the  planets  would 

be  much  simpler  (but  much  less  interesting),  if  only  Plato  had  been 

right  and  the  orbits  of  the  planets  were  perfect  circles.  A  circle  can  be 

thought  of  as  an  especially  simple  ellipse.  Starting  from  an  ellipse. 

a  circle  can  be  constructed  by  moving  both  foci,  F'  and  F,  to  the  center: 

Then  the  semimajor  axis  a  will  be  the  same  length  as  the  semiminor 

axis  b ,  and  we  will  call  both  of  them  the  radius,  R.  Notice  that  since 

a  circle  is  an  ellipse  (a  special  case  of  an  ellipse,  to  be  sure),  Kepler’s 

laws  allow  planetary  orbits  to  be  circles  but  don’t  require  it.  In  reality, 
the  orbits  of  the  planets  in  our  solar  system  are  all  very  nearly  (but  not 

exactly)  circles — although  other  objects  obeying  Kepler’s  laws  (such 

as  Halley’s  comet,  for  example)  have  orbits  that  are  very  far  from 
circular. 

Getting  back  to  our  point,  we  wish  to  demonstrate  that  Kepler’s  third 

law  means  that  the  force  of  the  Sun’s  gravity  diminishes  as  the  square 

of  the  distance  from  the  Sun.  Following  Feynman,  we’ll  simplify  the 
argument  by  pretending  that  the  planetary  orbits  really  are  circles.  Sym¬ 

bolically,  we’ll  call  the  time  to  complete  an  orbit  T.  Then  Kepler’s  third 

law  says  T  ~  R}a  (read,  "T  goes  as,  or  is  proportional  to,  Ri2"),  where 

R  is  the  distance  to  the  Sun.  How  is  that  related  to  the  R~2  law? 

Like  Feynman,  we  are  unable  to  follow  Newton’s  argument  here, 

and  even  Feynman’s  argument  is  a  bit  cryptic,  so  we've  formulated  our 
own.  This  argument  is  designed  not  only  to  make  the  point  about 

Kepler’s  third  law  and  Newton’s  R~2  law,  but  also  to  introduce  some 

geometrical  techniques  we’ll  need  for  the  grand  finale. 
The  diagram  that  we  (and  Feynman)  have  copied  from  Newton  shows 

successive  positions  of  a  planet  in  space: 

D 
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In  equal  intervals  of  time,  the  planet  moves  from  A  to  B ,  from  B  to  C, 

and  so  on.  We  can  also  represent  on  this  diagram  the  velocity  of  the 

planet  during  each  segment  (due  to  inertia,  the  planet  moves  from  A  to 

B  at  constant  velocity,  from  B  to  C  at  constant  velocity,  and  so  on). 

The  velocity  can  be  represented  by  an  arrow  pointing  in  the  direction 

of  motion  (remember  that  the  word  “velocity,”  as  it  is  used  in  physics, 
means  not  just  speed  but  also  direction): 

S  A 

There  is  no  reason  for  the  velocity  arrows  to  be  drawn  next  to  the 

corresponding  line  segment  of  the  orbit;  we  can  collect  them  together 

on  the  side  at  a  common  origin: 

D 

S  A 
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The  new  diagram  is  a  velocity  diagram  rather  than  a  position  diagram. 

The  direction  of  the  arrow  shows  the  direction  of  the  planet’s  motion, 
so  must  be  parallel  to  AB, 

and  the  length  of  the  arrow  is  proportional  to  the  speed.  In  other  words, 

the  faster  the  planet  is  moving  in  that  segment,  the  longer  the  arrow. 

If  the  planet  moves  more  slowly  on  the  segment  from  B  to  C  than  it 

did  from  A  to  B,  we  might  get  a  diagram  like  this: 

However,  the  change  in  velocity,  according  to  Newton’s  second  law, 
must  be  in  the  direction  of  the  Sun,  at  point  B,  where  the  impulsive 

force  causes  the  velocity  to  change:  If  is  the  velocity  before  the 
change. 

—  velocity  before  change 
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The  change  in  velocity  at  point  B ,  Avfl,  is  thus  in  the  direction  of  the 

force  from  the  Sun,  and  is  also  proportional  to  the  strength  of  the  force. 

If  the  Sun’s  force  were  twice  as  big  at  point  B,  Avfl  would  be  twice  as 

big.  That’s  the  meaning  of  Newton’s  second  law.  The  change  in  velocity 

at  each  of  the  (imaginary)  points  A,  B,  C,  .  .  .  on  Newton’s  diagram 
also  depends  on  the  (equal)  time  intervals  between  those  points.  Newton 

can  (and  does)  imagine  approximating  the  same  orbit  by  time  intervals 

half  as  big,  to  get  closer  to  the  actual  smooth  curve  that  the  orbit  makes 

in  space.  If  all  else  is  the  same,  and  the  time  intervals  are  half  as  big, 

then  each  change  in  velocity  will  also  be  half  as  big  but  there  will  be 

twice  as  many  of  them: 

D 

S  A 

(position  diagram)  (velocity  diagram) 

This  is  the  same  orbit,  produced  by  the  same  force  as  the  previous 

diagram.  The  force  is  proportional  to  the  change  in  velocity  at  each 

point  (half  as  big  for  this  diagram)  divided  by  the  time  interval  (also 

half  as  big):  F  ~  Av/At,  where  F  is  the  force  and  At  is  the  time  interval. 

The  force  in  this  diagram  is  the  same  as  the  force  in  the  previous 

diagram. 
There  is,  as  we  have  seen,  an  actual  correspondence  between  direction 

on  the  position  diagram  and  on  the  velocity  diagram.  However,  the 

sizes  of  the  diagrams  bear  no  relation  to  one  another  at  all.  We  could 
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choose  to  make  the  entire  velocity  diagram  twice  as  big  (which  wouldn  t 

change  any  of  the  directions)  and  i 

D 

would  still  be  correct: 

Av 

both  these  velocity  diagrams  are  correct 

Let’s  look  at  the  simplest  possible  specific  example.  Suppose  the 

orbit  were  just  a  circle,  of  radius  R.  Then  the  Newtonian  diagram  would 

look  like  this: 

Each  of  the  distances — SA,  SB,  SC,  and  so  on — would  be  equal  to  R, 
the  radius  of  the  circle.  Also,  each  change  of  velocity,  due  to  the 

impulsive  force  at  A,  B,  C,  D,  and  so  on,  would  be  the  same  no  matter 

how  the  force  from  the  Sun  depends  on  distance,  because  all  these 

points  are  at  the  same  distance  from  the  Sun.  It  follows  that  the  speeds 

along  AB,  BC,  and  so  on  must  all  be  the  same,  and  the  lengths  of  the 

segments  AB,  BC,  and  so  on  are  all  the  same.  That's  the  only  way  the 
orbit  can  follow  the  same  path,  time  after  time.  In  other  words,  the 

figure  drawn  by  Newton  is  a  regular  polygon,  a  figure  of  equal  sides 

and  angles,  inscribed  in  the  circle,  which  is  the  real  orbit. 

all  angles  are  the  same 

Regular  polygons  include  the  equilateral  triangle,  the  square,  the  penta¬ 

gon,  the  hexagon,  and  so  on.  The  more  sides  a  regular  polygon  has, 

(he  more  it  resembles  a  circle.  Newton  imagined  using  shorter  time 

intervals  for  his  figure,  giving  a  regular  polygon  with  more  sides, 
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and  thus  more  closely  approximating  the  real  circle,  ad  infinitum,  until 

the  real  orbit  is  achieved. 

In  the  velocity  diagram  for  a  circular  orbit,  all  the  velocities  are  of 

equal  length  and  at  equal  angles  apart,  so  that  all  the  changes  Av  are 
the  same: 

(orbit  diagram)  (velocity  diagram) 

Thus  the  velocity  diagram  is  also  a  regular  polygon,  which  also  becomes 

a  circle  when  the  orbit  becomes  a  circle  (after  going  through  the  ad- 
infinitum): 

(circular  orbit) (circular  velocity  diagram) 

Feynman’s  Proof  of  the  Law  of  Ellipses  1  05 

The  radius  of  the  circle  in  the  velocity  diagram  is  v,  the  uniform  speed 

of  the  planet  all  the  way  around  its  orbit.  That  speed  is  given  by  the 

distance  the  planet  travels  divided  by  the  time  it  takes.  The  distance  the 

planet  travels  is  the  circumference  of  the  orbit — that  is,  2-nR — and  the 

time  that  the  planet  takes  to  go  around  is  just  what  we  have  called  T , 

the  period  of  the  orbit.  Therefore,  v  is  equal  to  2ttRIT. 
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Each  time  the  planet  makes  one  complete  orbit,  the  velocity  arrow  also 

goes  around  one  whole  cycle: 

(orbit  diagram)  (velocity  diagram  at  the  same  instant) 

(orbit  diagram  later) (velocity  diagram  at  the  same  instant) 
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When  the  velocity  arrow  makes  a  complete  circle,  the  tip  of  the  arrow 
moves  a  distance  2rrv: 

0< _ circle  of  radius  v 
circumference  =  2nv 

Remember  that  the  change  in  velocity  is  given  by  the  motion  of  the  tip 
of  the  velocity  arrow: 

Let’s  say,  now,  that  the  circle  has  been  divided  up  into  30  parts,  each 
representing  the  motion  in  1  /30th  of  the  orbit  time  T. 

(orbit  diagram) (velocity  diagram) 
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The  force,  as  we’ve  seen,  is  proportional  to  Av/A r,  where  Av  is  the 
change  in  velocity,  equal  to  l/30th  of  the  perimeter  of  the  velocity 

circle,  and  A t  is  the  time  interval,  l/30th  of  T.  Obviously,  l/30th  of 

the  perimeter  divided  by  l/30th  of  the  time  is  the  same  as  the  whole 

perimeter  divided  by  the  whole  time.  So  Av/A t  is  equal  to  the  perime¬ 

ter — that  is,  2irv — divided  by  the  time  T: 

A R  motion  in  time  interval  A/ 

A R 

A  t 

2-tr  R 

T 

Av 

A  i 2rr v T 

So  the  force,  F,  is  proportional  to  2trv/7';  and  the  velocity,  v,  is  equal 
to  2-nRIT.  Symbolically: 

,,  2it  2tt  (  2tt R 

Multiplying  the  two  fractions  gives 

F  ~  (2tt)2  ̂  

This  statement  means,  for  example,  that  if  there  were  a  planet  twice  as 

far  from  the  Sun  (at  2 R  rather  than  R)  and  if  it  made  its  orbit  in  the 

same  time  period,  then  the  force  on  it  from  the  Sun,  being  proportional 

to  R ,  would  have  to  be  twice  as  big.  However,  that’s  not  the  way  planets 
behave.  We  have  seen  that  if  there  were  a  planet  at  2 R,  its  period  would 

be  2.83 T.  This  is  determined  by  Kepler’s  third  law: 

T  ~  R37  (the  period  of  a  planet  is  proportional  to  the  3/2  power 
of  its  distance  from  the  Sun) 

The  force,  F,  is  proportional  to  the  distance,  R,  divided  by  T2.  But  T2 

means  the  square  of  R3'2,  and  (R 3/2)2  =  R3.  So  the  force  is  proportional 

to  the  distance,  R,  divided  by  the  cube  of  the  distance,  R 3.  But  R  divided 

by  R 3  is  the  same  as  1  over  R2\  The  force  is  proportional  to  1  over  the 

square  of  the  distance  to  the  Sun!  This  is  the  connection  we’ve  been 

looking  for — the  R'2  force  law. 
Before  plunging  ahead,  this  is  a  good  place  to  stop  for  a  moment, 

to  see  where  we’ve  been  and  where  we  are  going. 
Kepler  has  given  us  three  laws,  and  Newton  has  given  us  three 

laws.  Kepler’s  laws,  however,  are  of  a  vastly  different  character  from 

Newton’s.  Kepler’s  laws  arc  generalizations  of  observations  of  the  heav¬ 

ens.  They  are  what  we  would  today  call  curve-fitting.  Kepler  took  a 

few  points  in  space— the  observed  positions  of  the  planet  Mars  at  known 

times — and  said,  “Aha!  All  these  points  fall  on  a  curve  called  an 

ellipse!”  That  description  trivializes  the  life’s  work  of  one  of  history’s 
great  geniuses,  but  it  is  nevertheless  a  correct  approximation.  That  is 

the  essential  nature  of  all  three  of  Kepler’s  laws. 

Newton’s  laws  are  of  a  radically  different  kind.  They  are  really 
assumptions  about  the  innermost  nature  of  physical  reality:  the  relations 
between  matter,  forces,  and  motion.  If  the  behavior  deduced  from  those 

assumptions  is  observed  in  nature,  then  the  assumptions  may  be  correct, 

and  if  that  is  the  case  then  we  have  seen  into  nature’s  heart,  or  the  mind 
of  God,  depending  on  your  taste  in  metaphors.  In  the  crucially  important 

arena  of  planetary  motions,  the  test  of  whether  the  Newtonian  assump¬ 
tions  are  correct  is  whether  they  give  rise  to  the  Keplerian  laws,  which 

summarize  with  great  precision  an  immense  amount  of  astronomical 
data. 

The  connection  between  Newton’s  laws  and  Kepler's  laws  is  more 
complex  than  that,  however;  so  far,  there  is  a  missing  link.  In  order  to 
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determine  the  planetary  motions  that  his  laws  would  dictate,  Newton 

had  to  discover  the  nature  of  a  particular  kind  of  force — the  force  of 

gravity.  In  order  to  do  so,  he  made  use  of  Kepler’s  second  and  third 
laws.  Then,  having  thus  deduced  the  nature  of  gravity,  he  was  able  to 

demonstrate  that  the  force  of  gravity,  acting  under  the  direction  of  his 

laws,  would  produce  Kepler’s  remaining  observation,  the  law  of  ellip¬ 
ses.  That  is  the  logical  sequence  of  events  as  presented  by  Newton  in 

his  Principia.  We  now  stand  at  the  point  in  his  argument  where  we 

have  deduced  the  nature  of  gravity,  making  use  of  Newton’s  laws  and 

Kepler’s  second  and  third  laws.  Let’s  review  how  we  did  that,  before 

the  curtain  rises  on  our  final  act — Kepler’s  first  law,  the  law  of  ellipses. 

As  applied  to  planetary  motions,  Newton’s  first  law,  the  law  of  inertia, 
says  that  if  a  planet  has  no  force  acting  on  it,  it  will  remain  at  rest  if 

it  begins  at  rest,  or  it  will  move  forever  in  a  straight  line  at  constant 

speed  if  it  begins  in  motion.  Why  it  does  so  is  a  mystery,  although 

Newton  sometimes  refers  to  the  mechanism  as  the  planet’s  “inner 

force.”  However,  the  point  with  regard  to  Newton’s  laws  is  not  to  ask 
why  they  are  true,  but  to  ask  only  whether  they  are  true. 

Newton’s  second  law  says  that  if  there  is  indeed  a  force  F  acting  on 
a  planet,  its  effect  is  to  divert  the  planet  from  the  straight  line  that  the 

planet  would  have  followed  at  constant  speed  under  the  influence  of 

inertia.  In  particular,  if  a  force  is  applied  for  a  given  time  interval,  A/, 

it  produces  a  change  in  velocity — that  is,  a  departure  from  the  inertial 
path,  Av,  proportional  to  the  force  and  in  the  same  direction  as  the 

force.  That  means  that  if  twice  the  force  (2 F)  is  applied,  then  twice  the 

change  in  velocity  (2Av)  is  produced.  It  also  means  that  2Av  can  be 

obtained  by  applying  the  same  force  for  twice  the  amount  of  time  (2Ar). 

Symbolically,  we  would  write  Av  ~  FAt.  It  further  means  that  if  the 
force  is  toward  the  Sun,  the  change  in  velocity  must  be  toward  the  Sun. 

Newton’s  third  law  says  that  forces  which  operate  between  different 
parts  of  a  planet  produce  no  net  force  upon  the  whole  planet,  so  that, 

for  purposes  of  analyzing  planetary  motions,  we  can  ignore  the  fact  that 

planets  are  large  complicated  bodies  and  treat  them  as  if  they  were 

concentrated  at  a  mathematical  point  at  their  centers. 

The  picture  Newton  then  pursues  is  that  the  Sun,  assumed  to  be 

immovable,  applies  on  the  planets  a  force,  gravity,  that  diverts  them 

from  the  inertial  straight  lines  they  would  otherwise  follow  and  into 
their  actual  orbits. 

One  property  of  those  actual  orbits,  described  by  Kepler’s  second 
law,  is  that  a  hypothetical  line  connecting  the  Sun  to  a  planet  sweeps 

out  equal  areas  in  equal  times  as  the  planet  moves  around  in  its  orbit. 

Newton  shows,  and  we  have  now  shown,  that  the  meaning  of  Kepler’s 
observation  is  that  the  force  of  gravity  acts  in  the  direction  of  the  line 

connecting  the  planet  to  the  Sun. 

A  second  property  of  planetary  motion  is  that  the  farther  away  a 

planet’s  orbit  is  from  the  Sun,  the  more  slowly  the  planet  moves  in  that 
orbit.  Specifically,  the  time  the  planet  takes  to  make  one  complete  circuit 

increases  as  the  3/2  power  of  the  distance  of  its  orbit  from  the  Sun. 

Newton  shows,  and  we  have  now  shown,  that  to  produce  this  result, 

the  force  deflecting  the  planets  into  their  various  orbits  must  weaken  as 

1  over  the  square  of  the  distance  from  the  Sun.  In  other  words,  if  a 

planet  is  twice  as  far  from  the  Sun,  the  gravitational  force  attracting  it 

toward  the  Sun  will  be  four  times  smaller. 

Notice  that  Kepler’s  second  law  (equal  areas)  deals  with  the  motion 
of  a  single  planet  in  different  parts  of  its  orbit,  while  his  third  law 

compares  the  orbits  of  different  planets.  It  is  strange  but  true  that  the 

masses  of  the  planets  have  no  bearing  at  all  on  how  fast  they  move  in 

their  orbits.  A  year  (one  complete  orbit)  of  the  planet  Earth  is  shorter 

than  a  year  of  the  planet  Jupiter  only  by  the  ratio  of  the  3/2  powers  of 

their  distances  from  the  Sun,  though  Jupiter’s  mass  is  more  than  300 
times  that  of  the  Earth. 

In  any  case,  we  now  know  that  the  force  of  the  Sun’s  gravity  on  a 
planet  is  directed  toward  the  Sun,  and  that  its  strength  decreases  as  1 

over  the  square  of  the  distance  from  the  Sun.  We  have  used  Kepler’s 
second  and  third  laws  to  find  out  that  much.  The  final,  triumphant 

accomplishment  will  be  to  show  that  such  a  force  of  gravity,  acting  as 

directed  by  Newton’s  laws,  will  produce  elliptical  orbits  for  the  planets. 

In  Feynman’s  lecture,  this  is  the  point  at  which  he  finds  himself  unable 

to  follow  Newton’s  line  of  argument  any  further,  and  so  sets  out  to 
invent  one  of  his  own.  His  first  departure  from  Newton  is  much  like 
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some  brilliant,  completely  unexpected  move  by  a  chess  prodigy.  Instead 

of  dividing  the  orbit  into  imaginary  segments  that  take  equal  intervals 

of  time,  as  Newton  always  does,  Feynman  divides  the  orbit  into  seg¬ 

ments  that  make  equal  angles  at  the  Sun.  We’ll  need  to  sketch  some 
diagrams  to  see  what  this  means. 

Recall  the  diagram  in  the  Principia  that  Feynman  copied  into  his 
lecture  notes: 

property  we  (and  Newton  and  Feynman)  have  demonstrated  for  the 

schematic  one:  it  sweeps  out  equal  areas  in  equal  times,  which  means 

that  the  planet  moves  faster  in  its  orbit  when  it  is  closer  to  the  Sun. 

In  an  equal  time  interval  A/, 

moving  slowly  when 
it  is  6r  from  the  Sun, 

the  planet  moves from  here 

to  here 
sweeping  out 

this  area 

In  time  Ar,  moving  rapidly  when  it  is  close 

to  the  Sun,  the  planet  goes  from 

to  here 

The  two  areas  are  equal 

In  a  certain  time  interval,  a  planet  would  move  from  A  to  B  if  there 

were  no  force  from  the  Sun.  The  time  interval  might  be,  for  example, 

1  second,  or  1  minute,  or  1  month.  In  the  next  equal  time  interval,  it 

would  continue  an  equal  distance  from  B  to  c.  Instead,  the  force  from 

the  Sun  produces  an  impulse  at  B  that  dictates  a  change  in  motion, 

directed  toward  the  Sun,  equal  to  BV.  During  the  second  time  interval, 

the  planet  actually  executes  a  combination  of  the  path  Be,  dictated  by 

inertia,  and  the  path  BV,  dictated  by  the  Sun’s  gravity:  it  follows  the 
diagonal  of  the  parallelogram  formed  by  the  two  motions  and  arrives 

at  C.  We  proved  earlier  that  the  triangles  swept  out  in  equal  times,  SAB 

and  SBC,  have  equal  areas.  Thus  Newton  approximates  the  orbit  as  a 

series  of  points  equally  spaced  in  time  (A,  B,  C,  .  .  .)  at  each  of  which 

the  planet  is  diverted  from  its  inertial  straight  line  by  an  instantaneous 

pull  from  the  Sun.  The  shorter  the  time  intervals,  the  more  frequent  the 

pull  from  the  Sun  and  the  more  nearly  the  trajectory  comes  to  resemble 

the  real  orbit,  which  is  a  smooth  curve  with  the  Sun’s  gravity  acting 
continuously  to  pull  the  planet  away  from  the  inertial  straight  line  it 
would  otherwise  have  followed.  The  final,  smooth  orbit  retains  the 

Feynman  has  used  the  same  argument,  taken  directly  from  Newton, 

to  prove  this  law  of  equal  areas.  Now,  however,  he  chooses  to  divide 

the  orbit  into  equal  angles  rather  than  equal  areas: 

these  two  angles  are  equal 

The  two  segments  of  orbit  shown  above  have  equal  central  angles,  but 

they  sweep  out  different  areas  and  therefore  take  different  amounts  of 
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time.  The  law  says  that  the  planet  sweeps  out  equal  areas  in  equal  times. 

That  means  that  if  it  sweeps  out  half  as  much  area,  it  takes  half  as  much 

time,  or 

At  ~  (area  swept  out) 

Let  us  for  the  moment  represent  these  equal-angle  segments  on  a 

Newton-type  diagram,  on  which  the  planet  undergoes  inertial  straight- 

line  motions  punctuated  by  velocity  changes  due  to  the  force  of  gravity. 

For  simplicity,  we  draw  the  velocity  changes,  Av,  directly  on  the  orbit 

diagram: 

On  the  side  of  the  orbit  closer  to  the  Sun,  the  planet  glides  from  A  to 

B,  gets  diverted  by  Av  due  to  the  Sun,  and  continues  from  B  to  C.  On 

the  other  end  of  the  orbit,  the  planet  goes  from  D  to  E,  suffers  a  pull 

producing  a  Av,  and  continues  from  E  to  F. 

We  know  that  the  planet  moves  faster  along  BC  than  along  EF.  To 

see  how  much  faster,  we  have  to  compare  the  areas  of  the  triangles 

SBC  and  SEF,  because  the  times  are  proportional  to  the  areas  swept 

out.  Remember  that  the  two  triangles  have  the  same  central  angle  at  S. 

Reorienting  SEF  and  laying  it  on  top  of  SBC,  we  have: 

The  area  of  each  triangle  is  1/2  (the  base)  x  (the  altitude).  Also,  these 

are  similar  triangles.  That  means  that  if  the  base  of  the  larger  triangle 

is  twice  as  big  as  the  base  of  the  smaller  one,  then  the  altitude  is  also 

twice  as  big;  in  that  case,  the  area  of  the  big  triangle  would  exceed  the 

area  of  the  small  one  by  2  x  2  =  4.  The  general  rule  is  that  the  area 

is  proportional  to  the  square  of  the  distance  from  the  Sun.2  So,  the  time 
it  takes  to  go  through  any  portion  of  the  orbit  is  proportional  to  the  area 

swept  out,  which  is  proportional  to  the  square  of  the  distance  from  the 

Sun.  Here’s  a  comparison  of  Newton’s  way  and  Feynman’s  way  of 
dividing  the  orbit  into  segments: 

'In  his  lecture,  Feynman  glosses  over  this  point  in  a  single  line.  It  is  not  so  simple,  however,  and 

we  haven't  really  proved  it  either.  Here's  a  more  complete  proof.  Consider  two  arbitrary  orbit 
segments  that  have  equal  central  angles: 
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( footnote  continued) 

We  will  now  call  SZ,  or  Sz,  the  distance  from  the  Sun  to  the  orbit.  According  to  the  property  of 

similar  triangles  (base  and  altitude  each  increase  as  the  size,  so  the  area  is  proportional  to  the 

square  of  the  size),  the  similar  triangles  SGH  and  Sgh  have  areas  in  proportion  to  the  squares  of 

the  lengths  SZ  and  Sz.  But  SWX  has  the  same  area  as  Sgh,  so  the  area  of  SWX  is  also  in  proportion 
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Symbolically,  Af  ~  R2  in  the  Feynman  drawing,  where  R  is  the 
distance  from  the  planet  to  the  Sun.  But  we  also  know  that  the  force 

from  the  Sun  decreases  with  distance,  according  to  the  inverse-square 

law — that  is,  F  ~  1  /R:.  Let's  go  back  to  the  kind  of  diagram  that  shows 
the  change  in  velocity,  Av,  at  each  discrete  point  of  the  orbit: 

these  angles 

are  all  equal 

At  each  point  around  the  orbit — A,  B,  C  .  .  .  D,  E,  F  .  .  .  ,  and  all 

Ihe  points  in  between — there  is  a  Av  toward  the  Sun.  The  bigger  the 
force  F,  the  bigger  the  Av;  also,  the  longer  the  time  interval  At,  the 

greater  the  change  in  velocity  Av: 

Av  ~  F  At 

But  since  F  ~  1 IR2  and  At  ~  R2, 

Av  ~  (1  /R2)  X  R2  =  1 

This  means  that  Av  does  not  depend  on  R  at  all!  Everywhere  in  the 

orbit,  no  matter  how  close  to  the  Sun  or  how  far  away,  the  Av  produced 

in  a  given  angle  is  the  same.  That  happens,  as  we  have  now  seen, 

(o  Ihe  square  of  Sz.  If  we  now  imagine  shrinking  the  central  angle  down  smaller  and  smaller  ad 

infinitum,  the  line  SZz  always  stays  inside  the  angle,  and  because  the  points  W  and  X  on  the 

elliptical  orbit  get  closer  and  closer  together,  the  length  Sz  ultimately  becomes  equal  to  SW  or  SX, 

which  is  what  we  previously  called  the  distance  to  the  Sun.  QED. 
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because  as  the  planet  gets  farther  away  from  the  Sun,  the  force  acting 

on  it  gets  weaker  (as  the  square  of  the  distance)  but  the  time  the  force 

has  to  act  on  the  planet  gets  longer  (also  as  the  square  of  the  distance). 

The  result  is  that  all  the  Av’s,  all  the  way  around  the  orbit,  are  the 

same.  That,  says  Feynman  in  his  lecture,  is  “the  central  core  from 
which  all  will  be  deduced — that  equal  changes  in  velocity  occur  when 

the  orbit  is  moving  through  equal  angles.” 
To  see  exactly  what  this  means,  let  us  look  back  for  a  moment  at 

the  type  of  diagram  sketched  by  Newton  and  copied  by  Feynman.  Rather 

than  representing  positions  of  the  planets,  we  will  represent  velocities: 

. 

In  Newton’s  way  of  doing  things,  the  time  intervals  were  all  the  same, 

and  the  Av’s  were  all  pointed  toward  the  Sun,  but  some  Av’s  were 

bigger  than  others  (the  biggest  Av’s  came  when  the  planet  was  closest 

to  the  Sun).  In  Feynman’s  scheme,  the  central  angles  are  all  the  same, 

so  that  the  time  intervals  are  different.  The  Av’s  all  point  toward  the 

Sun  (they  must,  according  to  Newton’s  second  law)  and  they  are  all 
now  exactly  equal  in  size,  all  the  way  around  the  orbit.  This  has  conse¬ 

quences  that  are  now  to  be  worked  out. 

At  this  point,  Feynman  has  sketched  in  his  lecture  notes,  with  meticu¬ 

lous  care,  the  orbit  diagram  and  the  corresponding  velocity  diagram  for 

equal-angle  segments.  Here  is  the  result: 
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The  orbit  starts  from  position  J,  goes  to  K  making  some  angle  at  the 

Sun,  suffers  a  Av  changing  its  direction,  then  continues  through  an  equal 

angle  from  K  to  L,  and  then  again  from  L  to  M: 

Unlike  Newton’s  version  of  this  diagram,  the  times  of  these  segments 
are  not  necessarily  equal.  The  velocities  are  in  the  directions  JK,  KL, 

and  so  on.  They  are,  in  general,  of  different  magnitudes  on  different 

segments.  The  changes  in  velocity  suffered  at  points  J,  K,  L,  and  M 

are  all  directed  toward  the  Sun  and  all  of  the  same  magnitude.  In  other 
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words,  at  J  there  is  a  Av  in  the  direction  JS;  at  K,  the  same  Av  occurs 

in  the  direction  KS;  and  so  on.  Using  these  facts,  Feynman  constructs 

the  velocity  diagram: 

v 

Av  is  parallel  to  KS 

on  the  orbit  diagram 

(velocity  diagram) 

On  the  orbit  diagram,  the  planet  moves  from  J  to  K  with  velocity  v j. 

On  the  velocity  diagram,  Vj  has  the  same  direction,  but  not  the  same 

length,  as  JK.  At  point  K ,  there  is  a  Av  in  the  direction  KS,  moving 

the  velocity  diagram  a  distance  Av  from  point  j  to  point  k,  where  the 

velocity  becomes  vK.  This  process  continues  at  the  next  step;  the  second 

segment  on  the  orbit  diagram  is  drawn  from  K,  parallel  to  vK,  to  a  point 

L,  so  that  KSL  is  the  same  angle  as  JSK: 

(orb#  diagram) (velocity  diagram) 
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We  now  find  the  point  1  on  the  velocity  diagram  by  adding  a  Av  equal 

in  magnitude  to  jk,  but  parallel  to  LS: 

The  same  procedure  can  be  repeated  all  the  way  around  the  orbit.  The 

next  step  gives  the  diagram  as  Feynman  sketched  it  in  his  notes: 

As  Feynman  wrote  in  his  notes,;'/:  is  parallel  to  KS,  Ik  is  parallel  to  LS, 

Im  is  parallel  to  MS,  and  Ik  =  jk  =  Im. 
Each  of  the  sides  of  the  velocity  diagram  (jk.  Id,  Im,  .  .  .)  is  parallel 

to  one  of  the  lines  radiating  from  the  Sun  in  the  orbit  diagram.  Because 
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the  lines  from  the  Sun  are  constructed  to  have  equal  angles,  the  sides 

of  the  figure  in  the  velocity  diagram  also  have  equal  external  angles: 

When  the  velocity  diagram  is  complete,  it  will  be  a  figure  with  equal 

sides  and  equal  (external)  angles: 

Notice  that  the  velocities  themselves,  which  are  the  distances  from  the 

origin  to  j,  k,  /,  and  so  on,  are  unequal  but  that  the  sides  (the  Av’s)  are 
equal.  The  resulting  figure  is  a  regular  polygon!  The  origin  of  the 
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velocities  is  not  at  the  center,  but  the  external  figure  itself  is  a  regular 

polygon. 
If  we  now  proceed  as  usual  to  divide  the  orbit  diagram  into  a  larger 

number  of  segments  with  equal  but  smaller  angles,  the  orbit  more  nearly 

approaches  a  smooth  curve — and  so  does  the  velocity  diagram.  Because 

the  velocity  diagram  is  a  regular  polygon,  the  smooth  curve  it  approaches 

is  a  circle!  But  the  origin  of  the  velocities  is  not  necessarily  at  the  center 

of  the  circle. 
At  this  point,  Feynman  sketches  in  his  lecture  notes  the  orbit  and 

velocity  diagrams  as  smooth  curves.  First  the  orbit.  It  starts  at  point  J, 

and  Feynman  has  drawn  it  in  the  conventional  way,  with  the  line  from 

the  Sun  extending  horizontally;  in  contrast  to  the  segmented  orbit  dia¬ 

gram,  the  velocity  at  point  J  is  a  vertical  line,  perpendicular  to  the  line 
from  the  Sun: 

After  some  time,  the  planet  arrives  at  point  P,  having  made  an  angle  0 
at  the  Sun: 

At  each  point,  the  instantaneous  velocity  is  tangent  to  the  smooth  curve. 
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Now  construct  the  corresponding  velocity  diagram.  It  will  be  a  circle, 

with  the  origin  off-center.  The  length  of  the  line  we  will  draw  to  represent 

v j  will  depend  on  the  planet’s  speed  at  point  J  of  the  orbit.  Remember 
that  on  a  velocity  diagram,  the  longer  the  line,  the  faster  the  speed. 

Point  J  on  Feynman’s  orbit  diagram  is  also  the  closest  point  to  the  Sun 
(Feynman  has  decided  this  in  his  head  without  mentioning  it  in  the 

lecture),  where  the  orbital  speed  is  greatest.  Therefore  the  line  Vj  must 

pass  through  the  center  of  the  circle,  because  it  has  to  be  the  longest 

line  on  the  velocity  diagram: 
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Drawn  this  way,  vj  is  vertical  (parallel  to  Vj  on  the  orbit  diagram),  and 

it  is  the  longest  distance  from  the  origin  to  any  point  on  the  circle.  The 

velocity  at  point  p  on  the  velocity  diagram,  corresponding  to  P  on  the 

orbit  diagram,  is  a  line  from  the  origin  parallel  to  vP: 

(orbit  diagram)  (velocity  diagram) 

It  is  also  true  that  the  angle  jCp  on  the  velocity  diagram  is  the  same 

angle,  0,  as  JSP  on  the  orbit  diagram: 

(orbit  diagram) (velocity  diagram) 
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The  reason  for  this  can  be  seen  if  we  go  back  to  the  complete  velocity 

diagram  of  orbit  segments — the  regular  polygon — and  draw  lines  out 

from  its  center  instead  of  from  the  origin  of  the  velocity  arrows: 

(orbit  diagram)  (velocity  diagram) 

The  orbit  has  been  divided  up  into  some  number  of  equal  angles,  which 

must  total  360°.  The  polygon  necessarily  has  the  same  number  of  equal 

sides,  each  occupying  the  same  fraction  of  360°.  Therefore  the  angle 
from  SJ  to  any  point  on  the  orbit  is  the  same  as  the  angle  from  Cj  to 

the  corresponding  point  on  the  velocity  diagram. 

The  net  result  is  shown  in  the  pair  of  diagrams  sketched  by  Feynman: 

J 

(orbit  diagram) (velocity  diagram) 
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Now  that  all  the  correspondences  between  the  two  diagrams  have 

been  established,  we  could  construct  the  orbit  starting  from  the  velocity 

diagram.  It  is  an  easier  starting  point,  because  we  know  that  it  is  just 

a  circle: 

(velocity  diagram) 

Any  orbit  permitted  by  Newton’s  laws  and  the  force  of  gravity  will 
have  this  same  velocity  diagram.  The  exact  shape  of  the  orbit  will 

depend  on  where  we  choose  to  place  the  origin  of  the  velocities.  Pick 

a  point,  any  point,  inside  the  circle,  but  not  at  C,  the  center  (we  will 

see  later  what  happens  if  the  point  is  at  C,  or  on  the  circle,  or  even 
outside  it): 

(velocity  diagram) 
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For  purposes  of  familiarity  only,  turn  the  whole  diagram  until  the  chosen 

point  lies  directly  below  C: 

The  chosen  point  is  to  serve  as  the  origin  of  velocities:  that  is,  a  line 

from  there  to  any  point  on  the  circle’s  perimeter  will  have  a  length 

proportional  to  the  planet’s  speed  at  that  point  on  the  orbit,  and  lie  in 

the  same  direction  as  the  planet’s  motion  at  that  point  on  the  orbit.  As 

noted,  the  line  from  the  origin  through  the  center  to  the  circle’s  perimeter 
is  the  longest  line  and  therefore  represents  the  point  on  the  orbit  where 

the  planet  is  moving  fastest. 

According  to  the  equal-areas  law,  this  will  be  the  point  on  the  orbit 
closest  to  the  Sun.  As  Feynman  has  done,  we  will  draw  the  orbit  so 

that  the  line  from  there  to  the  Sun  is  horizontal  and  the  velocity  is 

vertical  (that’s  why  we  rotated  the  origin  of  the  velocity  diagram  to  be 
beneath  the  center): 

Now  draw  a  line  from  the  origin  to  any  other  point  on  the  circle,  p: 
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This  point  corresponds  to  a  point  P  on  the  orbit  that  has  the  following 

properties:  the  line  from  the  origin  to  p  on  the  velocity  diagram  is 

parallel  to  the  tangent  at  the  point  P  on  the  orbit  diagram,  and  the  angle 

jCp  is  the  same  as  the  angle  JSP: 

(orbil  diagram) (velocity  diagram) 

So  at  each  angle  0,  we  know  the  direction  of  the  tangent  to  the  orbit 

we  are  seeking  to  construct.  How  can  we  construct  the  curve? 

Later  in  the  lecture,  Feynman  tells  us  that  this  was  the  most  difficult 

step  to  discover.  The  trick  is  to  rotate  the  velocity  diagram  clockwise 

by  90°,  so  that  the  directions  on  it  are  the  same  as  those  on  the  orbit 
diagram: 

Now  the  centra]  angle  0  is  the  same  on  both  diagrams,  but  the  line 

marked  “vP,”  which  was  parallel  to  the  velocity  at  P  on  the  orbit,  is 
now  perpendicular  to  it,  since  we  rotated  the  whole  velocity  diagram 

by  90°.  We  now  know,  from  the  velocity  diagram,  the  direction  from 
the  Sun  to  point  P  on  the  orbit,  and  we  know  the  direction  of  the  tangent 

to  the  orbit  at  that  point.  It  is  perpendicular  to  the  line  marked  “vP.” 

Out  we  don’t  yet  know  exactly  where  the  point  is. 
The  easiest  way  to  construct  the  curve  having  all  the  required  proper¬ 

ties  is  to  draw  it  right  on  top  of  the  velocity  diagram.  Then  the  size  of 

the  orbit  will  be  arbitrary,  but  all  the  directions,  and  therefore  the  shape 

of  the  orbit,  will  be  correct.  To  get  the  orbit,  simply  construct  the 

perpendicular  bisector  of  the  line  from  the  origin  to  p\ 

perpendicular 
bisector 
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Because  it  is  perpendicular  to  the  line  from  the  origin  to  p,  we  know 

that  it  is  parallel  to  vP,  the  velocity  at  point  P  on  the  orbit.  At  some 

point,  the  perpendicular  bisector  crosses  the  line  connecting  p  to  the 

center,  C: 

As  the  point  p  moves  around  the  circle,  the  intersection  of  pC  and  the 

perpendicular  bisector  moves  around  in  a  curve  of  its  own: 

As  p  moves  around  the  circle  to 

q,  the  intersection  of  the construction  moves  from  P  to  Q 

and  so  on,  creating  the  orhit. 

We  once  before  made  exactly  the  same  construction.  Starting  from  two 

points  in  the  plane  called  F'  and  F  (corresponding  respectively  to  origin 

and  C),  we  drew  a  line  from  F'  to  a  point  G'  (p  in  the  new  diagram): 

Then  we  connected  G'F,  and  drew  the  perpendicular  bisector  of  F'G', 

which  crosses  FG'  at  the  point  P: 

We  proved  then  that  as  the  point  G'  executes  a  circle  centered  at  F,  the 
point  P  executes  an  ellipse,  and  at  each  point  P  the  perpendicular  bisector 

is  tangent  to  the  ellipse  (see  pages  73  to  80). 
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We  have  now  made  exactly  the  same  construction  again  as  on  page 

79 — only  the  names  have  been  changed.  Here’s  how  the  new  diagram 
looks: 

Here,  p  is  a  point  on  a  circle  centered  at  C.  There  is  also  an  eccentric 

point:  the  origin  of  the  velocity  diagram,  which  we  now  call  O.  The 

line  segment  Op  has  a  perpendicular  bisector  at  /,  which  intersects  the 

line  Cp  at  a  point  P.  We  will  now  prove  again  that  each  point  P  created 

in  this  way,  as  p  moves  around  the  circle,  lies  on  an  ellipse,  and  that 

the  line  tP  is  tangent  to  the  ellipse  at  P.  Since  tP  is  parallel  to  the 

velocity  of  the  planet  when  it  is  at  point  P  on  its  orbit,  we  will  have 

constructed  the  unique  curve  that  has  the  planet  going  in  the  right 

direction  at  every  point  in  its  orbit. 

To  prove  that  the  curve  is  an  ellipse,  we  notice  that  the  triangles  OtP 

and  ptP  are  congruent: 
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CPp,  which  is  the  radius  of  the  circle  and  is  therefore  the  same  all  the 

way  around,  is  equal  to  CP  +  PO,  the  length  of  the  string  from  foci 

C  and  0  that  constructs  the  ellipse.  The  dashed  curve  (the  orbit)  is 

therefore  an  ellipse,  QED.  To  prove  that  tP  is  the  tangent  line  at  P,  go 

back  to  the  congruent  triangles: 

this  angle  is  equal 
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Now  let  the  lines  Pp  and  tP  cross  each  other: 

Therefore, 

this  angle 

is  equal  to 

this  angle 

The  line  tP  is  therefore  the  line  that  reflects  light  from  C  to  0  at  point 

P.  We  long  ago  proved  that  the  line  tP  that  has  that  property  is  the 
tangent  line.  For  the  last  time,  QED. 

The  proof  is  now  complete.  Feynman  is  not  quite  finished  yet,  but 

we  have  accomplished  in  full  what  we  set  out  to  show.  Newton’s  laws, 

together  with  an  R~ 2  force  of  gravity  toward  the  Sun,  result  in  elliptical 
orbits  for  the  planets.  Before  we  leave  the  subject,  let  us  look  back  one 

more  time  at  the  logic  of  the  arguments  that  have  enabled  us  (with  the 

help  of  Newton  and  Feynman)  to  accomplish  that  heroic  feat. 

Newton  says  something  like  this:  From  the  fact  that  planets  sweep 

out  equal  areas  in  equal  times,  I  used  my  laws  to  deduce  that  the  force 

of  the  Sun’s  gravity  on  a  planet  points  directly  toward  the  Sun.  Then, 
from  the  fact  that  the  orbital  periods  of  planets  are  proportional  to  the 

3/2  power  of  their  distances  from  the  Sun,  I  used  my  laws  to  deduce 
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that  the  force  of  gravity  diminishes  as  R~2.  Finally,  my  laws,  together 
with  these  two  facts  about  gravity,  produce  elliptical  orbits. 

Newton  didn’t  really  think  about  the  problem  that  way.  We  know 
from  earlier  versions  of  his  work  (for  example,  the  brief  treatise  he  sent 

to  Halley  in  1684)  that  he  experimented  with  various  forms  of  his  axioms 

about  dynamics.  Only  later  did  he  reduce  them  to  three  and  start  to 

refer  to  them  as  “laws.”  The  act  of  reducing  all  of  dynamics  to  three 
fundamental  laws  was  supremely  important,  because,  as  Newton  and 

his  followers  were  to  show  over  the  course  of  the  ensuing  three  centuries, 

(hose  laws  could  be  used  to  explain  not  only  the  motions  of  the  planets 

but  almost  every  other  phenomenon  in  the  physical  world  as  well. 

Newton’s  laws  tell  us  how  matter  behaves  when  it  is  acted  on  by  forces. 
The  only  two  things  we  need  to  know  about  the  physical  world  that 

Newton’s  laws  don’t  tell  us  are:  What  is  the  nature  of  matter?  What  is 
the  nature  of  the  forces  that  act  between  bits  of  matter?  These  two 

questions  are  still  the  central  concerns  of  the  science  of  physics. 

This  whole  powerful  reorganization  of  our  understanding  of  the  world 

begins  with  the  proof  of  elliptical  orbits.  In  this  case,  we  do  not  need 

to  know  very  much  about  the  nature  of  matter,  because  gravity  affects 

all  matter  in  exactly  the  same  way.  The  nature  of  the  force  of  gravity 

is  very  important,  however,  and  that’s  what  Newton  uses  two  of  Kepler’s 
laws  to  deduce. 

Finally,  we  have  seen  the  proof  of  elliptical  orbits  not  as  Newton 

originally  did  it  but  as  Richard  Feynman  worked  it  out.  Feynman  divides 

(he  orbit  into  equal  angles.  In  each  equal-angle  segment,  the  change  in 

velocity  is  directed  at  the  Sun.  and  proportional  to  the  strength  of  the 

force  and  the  time  over  which  the  force  acts.  That  is  Newton’s  second 

law.  The  time  is  proportional  to  the  area  swept  out,  which  (by  pure 

geometry)  is  proportional  to  the  square  of  the  distance,  and  the  force 

is  inversely  proportional  to  the  square  of  the  distance  (that’s  the  nature 
of  the  force  of  gravity);  so  no  matter  what  the  shape  of  the  orbit  is,  and 

no  matter  how  close  to  or  far  from  the  Sun  the  planet  wanders,  the 

planet  undergoes  equal  changes  of  velocity  in  equal  angles.  It  follows 

immediately  that- the  velocity  diagram  is  a  regular  polygon  (equal  sides 
at  equal  angles),  which  becomes  a  circle  for  smooth  orbits.  However, 

the  origin  of  the  velocity  diagram  is  not  at  the  center  of  the  circle. 
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Then,  with  the  help  of  a  geometric  construction  that  has  been  cunningly 

set  up  in  advance,  it  is  shown  that  the  orbit  has  the  shape  of  an  ellipse, 

with  the  origin  of  the  velocity  diagram  and  the  center  of  the  velocity 

circle  acting  as  foci. 

The  velocity  diagram  is  a  powerful  geometric  tool.  Newton’s  dynami¬ 

cal  laws,  together  with  an  R~2  force,  always  produce  a  circular  velocity 
diagram: 

velocity  diagram 

due  to  R’  law 

The  shape  of  the  orbit  depends  on  where  O,  the  origin  of  the  velocity 

diagram,  is.  If  O  coincides  with  C,  the  center  of  the  diagram,  then  the 

two  foci  of  the  ellipse  coincide  and  the  planet  has  the  same  speed  in 

all  parts  of  its  orbit: 

In  this  case,  the  orbit  is  simply  a  circle. 

If  the  point  O  is  anywhere  between  C  and  the  circumference  of  the 

diagram,  then  the  orbit  is  an  ellipse.  The  closer  O  is  to  C,  the  more 

nearly  circular  is  the  ellipse.  The  farther  O  is  from  C,  the  more  elongated 
ihe  ellipse: 

very  eccentric  orbit 

velocity  diagram 

(turned  90° ) 

In  our  solar  system,  all  the  planetary  orbits  are  nearly  circular.  In  the 

Earth’s  orbit,  the  distance  between  foci  is  about  1  percent  of  the  diameter 
of  the  orbit;  for  Mars,  it  is  about  9  percent;  for  Mercury  and  Pluto 

(whose  orbits  are  the  most  eccentric),  a  little  more  than  20  percent. 

Halley’s  comet,  by  contrast,  has  an  extremely  eccentric  elliptical  orbit. 
The  distance  between  its  foci  is  97  percent  of  the  diameter  of  its  orbit. 
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What  happens  if  O  is  outside  the  circle?  Let’s  go  back  to  the  velocity 

diagram  before  we  turned  it  by  90°.  We  still  have  the  largest  velocity 
in  the  orbit  at  the  point  of  closest  approach: 

As  the  angle  0  increases,  the  velocities  proceed  around  the  circle  in  the 

diagram: 

At  some  value  of  0,  the  line  from  O  is  the  tangent  to  the  velocity circle: 

Remember,  this  line  is  also  parallel  to  the  instantaneous  velocity  of  the 

orbit  and  the  tangent  to  the  velocity  diagram  is  in  the  direction  of  the 

Av’s  in  the  orbit  diagram,  which  represent  the  changes  in  the  velocity. 
In  other  words,  at  this  angle  0,  the  change  in  velocity  is  in  the  same 

direction  as  the  velocity  itself.  That  means  the  velocity  is  not  changing 

direction  anymore.  The  path  is  no  longer  a  curve,  it  is  a  straight  line. 

The  “orbit”  is  therefore  not  an  ellipse,  on  which  the  path  is  never  a 

straight  line.  Instead,  it  is  a  hyperbola,  another  of  the  conic  sections, 

which  tends  to  become  a  straight  line  far  away  from  the  focus: 
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On  this  trajectory,  the  “planet”  falls  toward  the  Sun  from  infinity, 
swings  around,  and  escapes  back  to  infinity.  Its  path  is  not  an  orbit  at 

all.  When  it  starts  from  infinity,  and  when  it  gets  back  there,  its  velocity 

is  not  zero;  the  velocity  is  proportional  to  the  length  of  the  line  from  O 

to  the  point  where  it  is  tangent  to  the  velocity  circle. 

If  the  point  O  is  on  the  circle,  the  “planet”  also  escapes  to  infinity, 
but  it  has  zero  velocity  when  it  gets  there;  this  trajectory  is  a  parabola. 

Thus,  Newton’s  dynamics  together  with  an  inverse-square  force  give 
circular  velocity  diagrams.  Depending  on  where  the  origin  of  the  velocity 

diagram  is,  the  orbit  can  be  a  circle,  an  ellipse,  a  parabola,  or  a  hyper¬ 
bola — the  curves  collectively  known  as  the  conic  sections. 

In  the  very  last  part  of  his  lecture  (just  because  he  has  time  left  over, 

he  says),  Feynman  turns  the  machinery  he’s  developed  onto  a  very 
different  kind  of  problem — and  again,  one  of  vast  historical  significance. 

In  1910,  two  researchers,  Ernest  Marsden  and  Hans  Geiger,  acting 

at  the  suggestion  of  their  leader,  Ernest  Rutherford,  found  that  if  a  beam 

of  a  (alpha)  particles  (the  nuclei  of  helium  atoms)  was  directed 

at  a  thin  gold  foil,  a  few  of  them  would  be  scattered  backward  instead 

of  passing  through  the  foil.  The  experiment  might  be  thought  of  as 

crudely  analogous  to  some  alien  being  firing  a  comet  into  the  solar 

system  in  an  attempt  to  determine  whether  the  mass  of  the  solar  system 

was  spread  out  in  a  uniform  blob  or  mostly  concentrated  in  a  compact 

object  (the  Sun)  at  the  center.  Only  a  compact  object  could  have  any 

hope  of  turning  the  comet  around  and  hurling  it  back.  Instead  of  a 

comet,  Rutherford’s  group  had  the  a  particle,  and  instead  of  the  solar 
system,  atoms  of  gold.  The  question  was  whether  the  matter  inside  an 

atom  was  spread  out  more  or  less  uniformly  (as  current  theory  then 

held)  or  was  concentrated  at  the  center.  The  fact  that  some  a  particles 
were  scattered  backward  showed  that  the  mass  had  to  be  concentrated 

at  the  center,  and  this  experiment  constituted  the  discovery  of  the  atomic 

nucleus. 

Here,  the  force  operating  between  the  projectile  and  the  constituents 

of  the  system  was  not  gravity  but  electricity.  Electricity  is  a  force  that 

acts  between  positive  and  negative  electric  charges  (terms  coined  by  a 

self-educated  Newtonian  scientist  of  the  eighteenth  century,  Benjamin 

Franklin).  Like  gravity,  electricity  is  an  R~2  force  that  acts  along  the 

line  joining  the  charges;  unlike  gravity,  it  can  either  attract  charges 

toward  each  other  (opposite  charges)  or  cause  charges  to  repel  each 

other  (like  charges).  The  force  of  gravity  always  attracts,  never  repels. 

The  electric  force  is  vastly  more  powerful  than  the  gravitational  force. 

In  fact,  it  is  so  powerful  that  it  is  self-neutralizing.  Every  atom  in  the 
gold  foil  has  exactly  the  same  amount  of  positive  and  negative  charge, 

so  from  the  outside  the  atom  is  neutral,  exerting  no  electric  force  if  it 

is  not  disturbed.  The  question  is:  What  happens  when  an  electrically 

charged  projectile — the  a  particle,  which  is  electrically  positive — is 
lired  into  an  atom?  The  answer  is  that  it  is  repelled  by  the  atomic 

nucleus,  which  contains  all  the  positive  charge  and  nearly  all  the  mass 

of  the  atom.  Occasionally,  by  sheer  chance,  an  a  particle  will  come 

close  enough  to  the  nucleus  to  get  kicked  almost  directly  backward. 

That’s  what  Marsden  and  Geiger  observed. 

Because  electricity  is  an  R~2  force  acting  along  the  line  between  the 
charges,  then  if  the  particles  obey  Newtonian  dynamics  all  the  geometric 

arguments  that  Feynman  used  earlier  are  applicable  to  this  problem. 

This  problem  is  to  find  the  probability  that  a  projectile  will  be  kicked 

back,  so  that  the  experiment  can  be  compared  to  a  quantitative  theory. 

The  starting  point  is  the  velocity-diagram  circle  (good  for  any  R~2  force 
along  the  line  between  the  particles),  with  the  origin  outside  the  circle. 

I'he  “orbits”  of  the  a  particles  will  not  be  ellipses  trapped  forever  in 
the  vicinity  of  the  nucleus,  but  rather  hyperbolas,  which  will  send  the 

a  particles  away  to  infinity  after  bending  their  trajectories  through  some 
larger  or  smaller  angle.  We  will  not  try  to  follow  all  the  steps  now, 

because  Feynman  no  longer  feels  constrained  to  stick  to  geometrical 

arguments.  Instead  he  pulls  out  all  the  analytic  stops  in  order  to  arrive 

at  what  is,  as  he  says,  a  very  famous  formula. 
It  deserves  its  fame,  because  it  led  directly  to  the  discovery  of  quantum 

mechanics,  and  hence  to  the  overthrow  of  the  Newtonian  dynamics  used 

to  arrive  at  the  formula!  But  that’s  a  story  for  another  book.  Now  the 
time  has  come  to  put  ourselves  directly  in  the  hands  of  the  master.  Enter 

Feynman. 



4 
Tine  .Motion  of  Planets 

.A. round,  tke  Sun” 
(March  13,  1964) 

The  title  of  this  lecture  is  “The  Motion  of  Planets  Around  the  Sun.” 
.  .  .  After  the  bad  news  you  just  heard  announced,  I  have  some  good 

news  for  the  same  reason,  that  since  the  exam  is  coming  up  Tuesday, 

nobody  wants  to  give  a  lecture  that  you  have  to  study,  so  I’m  giving  a 

lecture  that’s  just  for  the  fun  of  it,  for  your  entertainment  [applause). 

All  right,  all  right,  I  won’t  be  able  to  give  it.  Save  all  that  for  the  end 
and  then  make  up  your  mind. 

The  history  of  our  subject  of  physics  [arrived]  at  one  of  the  most 

dramatic  moments  when  Newton  suddenly  understood  so  much  from  so 

little.  And  the  history  of  this  discovery  is  of  course  the  long  story  about 

Copernicus,  Tycho  [Brahe]  making  his  measurements  of  the  positions 

of  the  planets,  and  Kepler  finding  the  laws  which  empirically  describe 

i lie  motion  of  these  planets.  It  was  then  that  Newton  discovered  that  he 

could  understand  the  motion  of  the  planets  by  stating  another  law.  And 
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you  know  all  this  from  the  lecture  on  gravitation,  so  I  continue  directly 

from  there  with  a  quick  summary  of  that  material. 

In  the  first  place,  Kepler  observed  that  the  planets  went  in  ellipses 

around  the  Sun,  with  the  Sun  as  the  focus  of  the  ellipse.  He  also 

observed — he  had  three  observations  to  describe  the  [orbits] — that  the 

area  that’s  swept  out  by  a  line  drawn  from  the  Sun  to  the  orbit  is 
proportional,  this  area  here,  is  proportional  to  the  time.  Finally,  to 

connect  planets  in  different  orbits,  he  discovered  that  the  planets  with 

different  orbits  have  periods,  or  times  of  rotation  around  the  complete 

orbit,  which  bear  a  3/2  power  ratio  to  the  major  axis  of  the  ellipse.  If 

there  were  circles  (to  make  it  easy),  it  would  mean  that  the  square  of 

the  time  to  go  around  the  circle  is  proportional  to  the  cube  of  the  radius 

of  the  circle. 

Now,  Newton  was  able  to  discover  two  things  from  this.  First  he 

noticed  that  equal  areas  and  equal  times  meant,  from  his  point  of  view 

about  inertia,  that  the  material  would  continue  in  a  straight  line  at  a 

uniform  velocity  if  it  were  not  disturbed,  that  the  deviations  from  the 

uniform  velocity  are  always  directed  toward  the  Sun,  and  that  equal 

areas  and  equal  times  is  equivalent  to  the  statement  that  the  forces  are 

toward  the  Sun.  So  he  used  one  of  Kepler’s  laws  already  to  deduce  that 
the  forces  were  toward  the  Sun.  And  then  it  is  easy  to  argue — especially 

for  the  special  case  of  circles  from  the  third  law — that  for  such  circles 
the  force  which  would  be  directed  toward  the  Sun  would  have  to  go 

inversely  as  the  square  of  the  distance. 

The  reason  for  that  is  something  like  this.  Suppose  that  we  take  a 

certain  fractional  part  of  an  orbit,  some  fixed  angle,  a  small  angle,  and 

a  particle  has  a  certain  velocity  in  one  part  of  the  orbit  and  another 

velocity  later  on.  Then  the  changes  in  velocity  for  a  fixed  angle  are 

evidently  proportional  to  the  velocity.  And  the  change  in  velocity  during 

an  interval  of  time — during  a  fixed  time — which  is  the  force,  is  evidently 

proportional  to  the  velocity  in  the  orbit  times  the  time  that  it  takes  to 

go  across  this  fraction  of  the  orbit.  I  mean,  divided  by  the  time.  So  the 

velocity  changes  proportional  to  the  velocity.  And  the  time  over  which 

that  change  has  taken  place  is  proportional  to  the  time  that  it  takes  to 

go  around  the  whole  orbit — because  it  is  a  fixed  angle,  like  one-hun¬ 
dredth  of  the  orbit.  Therefore  the  centripetal  acceleration,  or  change  per 

second  of  the  velocity  in  the  direction  of  the  center,  is  proportional  to 

the  velocity  on  the  orbit  divided  by  the  time  that  it  takes  to  go  around.1 
You  can  put  that  in  many  different  ways,  because  of  course  the  time 

it  takes  to  go  around  is  related  to  the  velocity  by  this  relation.  That  the 

speed  times  the  time  is  the  distance  around — or.  rather,  that  the  speed 

times  the  time  is  proportional  to  the  radius.  And  so  you  can  either 

substitute  for  the  time,  obtaining  your  famous  v2/R.  Or  better.  I’ll  substi¬ 
tute  for  the  velocity  R/T.  The  velocity  is  evidently  proportional  to  the 

radius  divided  by  the  time  that  it  takes  to  go  around,  so  that  the  centrifu¬ 

gal  acceleration  goes  as  the  radius  and  inversely  as  the  square  of  the 

time  to  go  around.  But  Kepler  tells  us  that  the  time  to  go  around  squared 

is  proportional  to  the  cube  of  the  radius.  That  is,  the  denominator  is 

proportional  to  the  cube  of  the  radius,  and  therefore  the  acceleration 

toward  the  center  is  inversely  as  the  square  of  the  distance.  So  Newton 

was  able  to  deduce — in  fact,  [Robert]  Hooke  deduced  earlier  than  New 

ton  in  the  same  way — that  this  force  would  be  inversely  as  the  square 

of  the  distance.  So  from  two  of  Kepler’s  laws,  we  come  [away]  with 
only  two  conclusions.  No  one  can  verify  anything  that  way.  This  may 

be  of  no  particular  interest,  because  the  number  of  hypotheses  entered 

is  equal  to  the  number  of  facts  checked  as  the  number  of  guesses  used. 

On  the  other  hand,  what  Newton  discovered — and  which  was  the 

most  dramatic  of  his  discoveries — was  that  the  third  law  [Feynman 

means  the  First  Law]  of  Kepler  was  now  a  consequence  of  the  other 

two.  Given  that  the  force  is  toward  the  Sun,  and  given  that  the  force 

varies  inversely  as  the  square  of  the  distance,  to  calculate  that  subtle 

combination  of  variations  and  velocity  to  determine  the  shape  of  the 

orbit  and  to  discover  that  it  is  an  ellipse  is  Newton’s  contribution,  and 
therefore  he  felt  that  the  science  was  moving  forward,  because  he  could 

understand  three  things  in  terms  of  two. 

As  you  well  know,  he  understood  ultimately  many  more  than  three 

things — that  the  orbits  in  fact  are  not  ellipses,  that  they  perturb  each 

other,  that  the  motion  of  the  Jupiter  satellites  is  also  understood,  the 

motion  of  the  Moon  around  the  Earth  and  so  on,  but  let  us  just  concen- 

'I'eynman  is  saying  Av/Ar  is  proportional  to  v/T.  See  Chapter  3,  page  108.  He  refers  to  Av/Ar  as 

'  the  centripetal  acceleration"  above,  and  below  he  calls  it  "the  centrifugal  acceleration." 



148  FEYNMAN’S  LOST  LECTURE ‘The  Motion  of  Planets  Around  the  Sun' 

149 

trate  on  this  one  item,  in  which  we  disregard  the  interactions  of  one 

planet  with  another.  / 

I  can  summarize  what  Newton  said  and  in  this  way  about  a  planet: 

that  the  changes  in  the  velocity  in  equal  times  are  directed  toward  the 

Sun,  and  in  size  they  are  inversely  as  the  square  of  the  distance.  It  is 

now  our  problem  to  demonstrate — and  it  is  the  purpose  of  this  lecture 

mainly  to  demonstrate — that  therefore  the  orbit  is  an  ellipse. 
It  is  not  difficult,  when  one  knows  the  calculus,  and  to  write  the 

differential  equations  and  to  solve  them,  to  show  that  it’s  an  ellipse.  I 
believe  in  the  lectures  here — or  at  least  in  the  book — [you]  calculated 
the  orbit  by  numerical  methods  and  saw  that  it  looked  like  an  ellipse. 

That’s  not  exactly  the  same  thing  as  proving  that  it  is  exactly  an  ellipse. 
The  Mathematics  Department  ordinarily  is  left  the  job  of  proving  that 

it’s  an  ellipse,  so  that  they  have  something  to  do  over  there  with  their 
differential  equations.  [Laughter] 

I  prefer  to  give  you  a  demonstration  that  it’s  an  ellipse  in  a  completely 
strange,  unique,  [and]  different  way  than  you  are  used  to.  I  am  going 

to  give  what  I  will  call  an  elementary  demonstration.  [But]  “elemen¬ 

tary”  does  not  mean  easy  to  understand.  “Elementary”  means  that  very 
little  is  required  to  know  ahead  of  time  in  order  to  understand  it,  except 

to  have  an  infinite  amount  of  intelligence.  It  is  not  necessary  to  have 

knowledge  but  to  have  intelligence,  in  order  to  understand  an  elementary 

demonstration.  There  may  be  a  large  number  of  steps  that  are  very  hard 

to  follow,  but  each  step  does  not  require  already  knowing  calculus, 

already  knowing  Fourier  transforms,  and  so  on.  So  by  an  elementary 

demonstration  I  mean  one  that  goes  back  as  far  as  one  can  with  regard 

to  how  much  has  to  be  learned. 

Of  course,  an  elementary  demonstration  in  this  sense  could  be  first 

to  teach  [you]  calculus  and  then  to  make  the  demonstration.  This,  how¬ 

ever,  is  longer  than  a  demonstration  which  I  wish  to  present.  Secondly, 

this  demonstration  is  interesting  for  another  reason — it  uses  completely 

geometrical  methods.  Perhaps  some  of  you  were  delighted  in  geometry 

in  school  with  the  fun  of  trying  or  having  the  ingenuity  to  discover 

the  right  construction  lines.  The  elegance  and  beauty  of  geometrical 

demonstration  is  often  appreciated  by  lots  of  people.  On  the  other  hand, 

after  Descartes,  all  geometry  can  be  reduced  to  algebra,  and  today  all 

mechanics  and  all  these  things  are  reduced  to  analysis  with  symbols  on 

pieces  of  paper  and  not  by  geometrical  methods. 

On  the  other  hand,  in  the  beginning  of  our  science — that  is,  in  the 

time  of  Newton — the  geometrical  method  of  analysis  in  the  historical 

tradition  of  Euclid  was  very  much  the  way  to  do  things.  And  as  a 

matter  of  fact,  Newton's  Principia  is  written  in  a  practically  completely 
geometrical  way — all  the  calculus  things  being  done  by  making  geomet¬ 

ric  diagrams.  We  do  it  now  by  writing  analytic  symbols  on  the  black¬ 
board,  but  for  your  entertainment  and  interest  I  want  you  to  ride  in  a 

buggy  for  its  elegance,  instead  of  in  a  fancy  automobile.  So  we  are 

going  to  derive  this  fact  by  purely  geometrical  arguments — well,  by 

essentially  geometrical  arguments,  because  I  don’t  know  what  that 

means,  anything  precise  I  don’t  know  what  it  means,  like  purely  geomet¬ 
rical  arguments — but  essentially  geometrical  arguments,  and  see  how 
well  we  get  on. 

So  our  problem  is  to  demonstrate  that  if  this  is  true — that  the  changes 
in  velocities  are  directed  toward  the  Sun,  and  they  are  inversely  as  the 

square  of  the  distance  in  equal  times — that  the  orbit  is  an  ellipse.  We 

then  have  first  to  understand — we  must  start  with  something — we  first 

must  know  what  an  ellipse  is.  If  there  is  no  available  definition  of  an 

ellipse,  it  is  going  to  be  impossible  to  demonstrate  the  theory.  And 

furthermore,  if  you  cannot  understand  the  meaning  of  this  proposition, 

of  course  you  also  cannot  demonstrate  the  theorem.  So,  many  people 

have  said,  “Oh  yeah,  but  you’ve  got  to  know  something  about  an 

ellipse.”  I  know — you  can’t  state  the  statement  otherwise.  And  also 

you  have  to  have  some  understanding  of  this  idea.  That’s  also  true.  But 

beyond  that,  I  don’t  think  we  need  much  extra  knowledge,  but  a  large 

amount  of  attention,  please,  and  careful  thinking.  That’s  not  easy,  and 

it’s  quite  a  job,  and  it’s  not  worthwhile.  It  is  much  easier  to  do  it  by 

the  calculus,  but  you’re  going  to  do  it  that  way  anyway,  and  you  must 
remember  that  this  is  just  to  see  how  it  would  look. 

There  are  several  ways  of  defining  an  ellipse,  and  I  have  to  choose 

one,  and  I  will  suppose  that  the  one  with  which  everyone  is  familiar  is 

the  fact  that  an  ellipse  can  be  made,  or  the  ellipse  is  the  curve  that  can 

be  made,  by  taking  one  string  and  two  tacks  and  putting  a  pencil  here 

and  going  around.  Or  mathematically,  it  is  the  locus  (nowadays  they 
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say  the  set  of  all  points) — all  right,  the  set  of  all  points — such  that  the 

sum  of  the  distance  FP  and  the  distance  F'P  [F  and  F'  being]  the  two 

fixed  points,  remains  constant.  I  suppose  you  know  that’s  the  definition 
of  an  ellipse.  You  may  have  heard  another  definition  of  an  ellipse:  if 

you  wish,  these  two  points  are  called  the  foci,  and  this  focus  means 

that  light  emitted  from  F  will  bounce  to  F'  from  any  point  on  the  ellipse. 
Let  me  just  demonstrate  the  equivalence  of  those  two  propositions, 

at  least.  So  the  next  step  is  to  demonstrate  that  light  will  be  reflected 

from  F  to  F‘ .  The  light  is  reflected  as  though  the  surface  here  were  a 
plane  tangent  to  the  actual  curve.  What  1  therefore  have  to  demonstrate 

is  this — and  you  know,  of  course,  that  the  law  of  reflection  for  light 

from  a  plane  is  that  the  anglefs]  of  incidence  and  reflection  are  the  same. 

Therefore,  what  I  have  to  prove  is  this:  that  if  1  were  to  draw  a  line 

here,  such  that  its  angles  made  with  the  two  lines  FP  and  F'P  are  equal, 
that  that  line  is  then  tangent  to  the  ellipse. 

Proof:  Here’s  the  line  drawn  as  described.  Make  the  image  point  of 

F'  in  this  line.  That  is  to  say,  extend  the  perpendicular  from  F'  to  the 

line  the  same  distance  on  the  other  side,  to  obtain  G',  the  image  of  F' . 

Now  connect  the  point  P  to  G'.  Notice  [that]  because  of  the  equal 
angles,  that  this  angle  here  is  the  vertical  angle.  Well,  this  angle  is 

equal  to  this  angle,  because  these  two  right  triangles  are  exactly  the 

same.  It’s  an  image,  so  this  side  is  the  same  as  that  side,  and  these  two 

angles  are  equal;  this  is  a  straight  line.  So  that  PG'  here  is  exactly  equal 

to  the  F'P  part,  and  incidentally,  FG'  is  a  straight  line,  so  that  the  FP 

+  F'P,  which  is  the  sum  of  these  two  distances,  is  in  fact  FP  +  G'P, 

because  F'P  =  G'P.  Now,  the  point  is  that  if  you  take  any  other  point 

on  the  tangent — say,  Q — and  you  took  the  sum  of  these  two  distances 

to  Q,  it  is  easy  to  see  that  the  distance  F'Q  is,  again,  the  same  as  G'Q. 

So  that  the  sum  of  these  two  distances,  F'Q  to  F,  is  the  same  as  the 

distance  from  F  to  Q  and  Q  to  G' .  In  other  words,  the  sum  of  the 
distances  from  the  two  foci  on  any  point  on  the  line  is  equal  to  the 

distance  from  F  to  G',  by  going  up  to  that  point  and  across.  Evidently 
larger,  evidently  always  larger  than  going  on  the  straight  line  across. 

In  other  words,  the  sum  of  the  two  distances  to  a  point  Q  is  greater 

than  it  is  for  the  ellipse — for  any  point  Q  except  for  point  P.  For  any 

point  on  this  line,  then,  the  sum  of  the  distances  to  these  two  points  is 

greater  than  it  is  for  a  point  on  the  ellipse. 
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Now  I  take  the  following  to  be  evident  and  perhaps  you  can  devise 

a  proof  to  satisfy  you — that  if  the  ellipse  is  the  curve  in  which  the  sum 
of  the  two  points  is  a  constant,  that  the  points  outside  the  ellipse  have 

the  sum  to  the  two  points  greater  and  the  points  inside  the  ellipse  have 

the  sum  to  the  two  points  less;  so  that  since  these  points  on  the  line 

have  a  sum  greater  than  a  point  on  the  ellipse,  all  this  line  lies  outside 

the  ellipse  with  the  sole  exception  of  the  point  P ,  whence  it  must  be 

tangent  and  does  not  intersect  at  two  points  nor  ever  come  inside.  All 

right,  so  the  thing  is  therefore  tangent,  and  we  know  that  the  reflection 

law  is  right. 

I  have  another  property  to  describe  about  an  ellipse,  the  reason  for 

which  will  be  completely  obscure  to  you,  but  it’s  something  which  I 
will  need  later  in  this  demonstration. 

May  I  say  that  although  the  methods  of  Newton  were  geometrical, 

he  was  writing  in  a  time  in  which  the  knowledge  of  the  conic  sections 

was  the  thing  that  everybody  knew  very  well,  and  so  he  perpetually 

uses  (for  me)  completely  obscure  properties  of  the  conic  sections,  and 

I  have,  of  course,  to  demonstrate  my  properties  as  1  go  along.  I  would 

like,  however,  for  you  to  take  the  same  diagram  again,  which  I  made 

here,  and  draw  it  over  again.  It’s  drawn  exactly  the  same  here:  F'  and 

F,  there’s  that  tangent  line,  here’s  the  image  point  G'  of  F\  However, 

I  would  like  for  you  to  imagine  what  happens  to  the  image  point  G'  as 
the  point  P  goes  around  the  ellipse.  It  is  evident,  as  I  already  indicated, 

that  PG'  is  the  same  as  F'P,  so  that  FP  +  F'P  is  a  constant,  [and  that] 

means  that  FP  +  PG'  is  a  constant.  In  other  words,  that  FG'  is  a 

constant.  In  short,  the  image  point  G'  runs  around  the  point  F  in  a  circle 

of  constant  radius.  All  right.  At  the  same  time,  I  draw  a  line  from  F' 

to  G'  and  I  find  [that]  my  tangent  is  perpendicular  to  it.  That’s  the  same 
statement  as  all  that  was  before.  I  just  want  to  summarize  that,  to  remind 

you  of  a  property  of  an  ellipse,  which  is  this:  that  as  a  point  G'  goes 

around  a  circle,  a  line  drawn  from  an  eccentric  point  to  this  point  G' — 

this  is  an  off-center  point  to  the  point  G' — will  always  be  perpendicular 
to  the  tangent  of  the  ellipse.  Or  the  other  way  around:  the  tangent  is 

always  perpendicular  to  the  line — or  a  line — drawn  from  an  eccentric 

point.  All  right,  that’s  all,  [and]  we’ll  come  back  to  it  and  we’ll  remem¬ 

ber,  and  we  will  review  it  again,  so  don’t  worry.  That’s  just  a  sum¬ 

mary  of  some  of  the  properties  of  an  ellipse,  starting  from  the  facts. 
That’s  the  ellipse. 

On  the  other  hand,  we  have  to  learn  dynamics,  we  have  to  put  them 

together.  So  now  we  have  to  explain  what  dynamics  is  all  about.  I  want 

this  proposition,  that’s  the  geometry;  now  the  mechanics,  what  this 
proposition  means.  What  Newton  means  by  this  is  this:  that  if  this  is 

the  Sun,  for  instance,  the  center  of  the  attraction,  and  at  a  given  instant 

a  particle  were  to,  say,  be  here,  and  let  me  suppose  that  it  moves  to 

another  point,  from  A  to  B,  in  a  certain  interval  of  time.  Then,  [if]  there 

were  no  forces  acting  toward  the  Sun,  this  particle  would  continue  in 

the  same  direction  and  go  exactly  the  same  distance  to  a  point  c.  But 

during  this  motion  there’s  an  impulse  toward  the  Sun,  which,  for  the 
purposes  of  analysis,  we  will  imagine  all  the  curves  at  the  middle 

instant — in  other  words,  at  this  instant.  In  other  words,  we  concentrate 

all  our  impulses  in  an  approximate  way  of  thinking  to  this  middle 

moment.  And,  therefore,  the  impulse  is  in  the  direction  of  the  Sun,  and 

this  might  represent  the  change  in  motion.  That  means  that  instead  of 

this  moving  to  here,  it  moves  to  a  new  point,  which  is  C,  which  is 

different  than  c,  because  the  ultimate  motion  is  this  motion  compounded 

from  the  original  plus  the  additional  impulse  given  toward  the  center 
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Diagram  from  Feynman’s  lecture  notes. 

of  the  Sun.  So  that  the  ultimate  motion  is  along  the  line  BC,  and  at  the 

end  of  the  second  interval  of  moment  of  time  the  particle  will  be  at  C. 

I  emphasize  that  Cc  is  parallel  to  and  equal  to  BV,  let  us  say,  the  impulse 

given  from  the  Sun.  It  is  therefore  parallel  to  a  line  from  B  to  the  center 

of  the  Sun.  Finally,  the  rest  of  the  statement  is  that  the  size  of  BV  will 

vary  inversely  as  the  square  of  the  distance  as  we  go  around  the  orbit. 

I  have  drawn  this  same  thing  over  again  here — exactly  the  same  way, 

no  change  at  all,  excepting  color  makes  it  more  interesting.  Here’s  the 
motion  that  the  particle  would  have — has  in  the  first  instant  of  time — 
and  the  motion  which  it  would  continue  to  have  if  it  were  to  continue 

for  the  second  interval  of  time  with  no  force.  May  I  point  out  to  you 

that  the  areas  that  would  be  swept  through  in  that  case  would  be  equal 

during  those  two  intervals  of  time.  For  these  two  distances,  AB  and  Be, 

are  evidently  equal,  and  therefore  the  two  triangles  SAB  and  SBc,  which 

are  the  two  areas,  will  be  equal:  for  they  have  equal  bases  and  a  common 

altitude.  If  you  extend  the  base  and  draw  the  altitude,  it’s  the  same 
altitude  for  both  triangles;  and  since  the  bases  are  equal,  the  areas  then 

swept  through  are  equal. 

On  the  other  hand,  the  actual  motion  is  not  to  the  point  c  but  to  the 

point  C,  which  differs  from  the  position  c  by  a  displacement  in  the 

direction  of  the  Sun  at  the  moment  B,  that  is,  in  the  blue  line  parallel 

to  the  original  blue  line.  Now  I  would  like  to  point  out  to  you  that  the 

area  that  would  be  most  occupied — I  mean,  which  would  be  swept  out 
in  that  second  interval  of  time  even  if  there  were  a  force:  namely,  the 

area  SBC — is  the  same  as  the  area  that  there  would  be  if  there  were  no 

force — namely,  SBc.  The  reason  is  that  we  have  two  triangles  which 

common  altitude 

Feynman  does  it  this  way  instead 
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have  a  common  base  and  who  have  an  equal  altitude,  for  they  lie  between 

parallel  lines.  Since  the  area[s]  of  the  triangle  SBC  and  the  triangle  SAB 

are  equal — but  since  those  points  A,  B,  and  C  represented  positions  in 

succession  at  equal  times  in  the  orbit — we  see  that  the  area[s]moved 

through  in  equal  times  are  equal.  We  can  also  see  that  the  orbit  remains 

a  plane,  that  the  point  c  being  in  the  plane  and  the  line  Cc  being  in  the 

plane  of  ABS,  the  remaining  motion  is  in  the  plane  ABS. 

And  1  have  drawn  a  succession  of  such  impulses  around  this  imaginary 

polygonal  orbit.  Of  course,  to  find  the  actual  orbit,  we  need  to  make 

the  same  analysis  with  a  much  smaller  interval  of  time — and  a  much 

finer  rate  of  impulsing — until  we  get  the  limiting  case,  in  which  we 

have  a  curve.  And  in  the  limiting  case  in  which  we  have  a  curve — the 

area  swept  by  this  thing — the  curve  will  lie  in  a  plane,  and  the  area 

swept  will  be  proportional  to  the  time.  So  that’s  how  we  know  that  we 
have  equal  areas  in  equal  times.  The  demonstration  that  you  have  just 

seen  is  an  exact  copy  of  one  in  the  Principia  Mathematica  by  Newton, 

and  the  ingenuity  and  delight  which  you  may  or  may  not  have  gotten 

from  it  is  that  already  existing  in  the  beginning  of  time. 

Now  the  remaining  demonstration  is  not  one  which  comes  from  New¬ 

ton,  because  1  found  I  couldn’t  follow  it  myself  very  well,  because  it 
involves  so  many  properties  of  conic  sections.  So  I  cooked  up  another 
one. 

We  have  equal  areas  and  equal  times.  I  would  like  now  to  consider 

what  the  orbit  would  look  like  if  instead  of  using  equal  time,  one  were 

to  think  of  the  succession  of  positions  which  correspond  to  equal  angles 
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from  the  center  of  the  Sun.  In  other  words,  I  repicture  the  orbit  with 

the  succession  of  points,  J,  K,  L,  M,  N,  which  correspond  not  to  equal 

instants,  like  they  did  in  the  diagram  before,  but  rather  [to]  equal  angles 

of  inclination  from  the  original  position.  To  make  this  a  little  bit  simpler, 

although  it  is  not  at  all  essential,  I  have  supposed  that  the  original  motion 

was  perpendicular  to  the  Sun  at  the  first  point — but  that’s  not  essential, 
it  just  makes  the  diagrams  cleaner. 

5 

Diagram  from  Feynman's  lecture  notes. 

Now  we  know  from  the  proposition  previously  that  equal  [areas] 

occupy  equal  times  to  be  swept  through.  Now  listen:  I  would  point  out 

to  you  that .  .  .  equal  angles,  which  is  what  I’m  aiming  for,  means  that 
areas  are  not  equal,  no,  but  they  are  proportional  to  the  square  of  the 

distance  from  the  Sun;  for  if  I  have  a  triangle  of  a  given  angle,  it  is 

clear  that  if  I  make  two  of  them  that  they  are  similar;  and  the  propor¬ 
tional  area  of  similar  triangles  is  proportional  to  the  square  of  their 

dimensions.2  Equal  angles  therefore  means — since  areas  are  propor¬ 

tional  to  time — equal  angles  therefore  means  that  the  times  to  be  swept 

through  these  equal  angles  are  proportional  to  the  square  of  the  distance. 

In  other  words,  these  points — J,  K,  L,  and  so  on — do  not  represent 

/ 
J 

2 This  is  ihe  point  explained  in  the  footnote  to  Chapter  3,  page  1 15. 
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pictures  of  the  orbit  at  equal  times,  no,  but  they  represent  pictures  of 

the  orbit  with  successions  of  times  which  are  proportional  to  the  square 
of  the  distance. 

Now,  the  dynamical  law  is  that  there  are  equal  changes  in  velocity, 

no — that  the  changes  in  velocity  vary  inversely  as  the  square  of  the 

distance  from  the  Sun — that  is,  the  changes  of  velocity  in  equal  times. 
Another  way  of  saying  the  same  thing  is  that  equal  changes  of  velocity 

will  occupy  times  proportional  to  the  square  of  the  distance.  It’s  the 
same  thing.  If  I  take  more  time,  I  get  more  change  in  the  velocity,  and, 

although  they  are  falling  off  for  equal  times  inversely  as  the  square,  if 

I  make  my  times  proportional  to  the  square  of  the  distance,  then  the 

changes  in  velocity  will  be  equal.  Or,  the  dynamical  law  is:  equal 

changes  in  velocity  occur  in  times  proportional  to  the  square  of  the 

distance.  But  look,  equal  angles  were  times  proportional  to  the  square 

of  the  distance.  And  so  we  have  the  conclusion,  from  the  law  of  gravita¬ 

tion,  that  equal  changes  of  velocity  will  occur  in  equal  angles  in  the 

orbit.  That’s  the  central  core  from  which  all  will  be  deduced — that  equal 
changes  in  velocity  occur  when  the  orbit  is  moving  through  equal  angles. 

So  I  now  draw  on  this  diagram  a  little  line  to  represent  the  velocities. 

Unlike  the  other  diagram,  those  lines  are  not  the  complete  line  from  J 

to  K,  for  in  that  diagram  those  were  proportional  to  the  velocities,  for 

the  times  were  equal,  and  the  length  divided  by  equal  times  represented 

the  velocities.  But  here  I  must  use  some  other  scale  to  represent  how 

far  the  particle  would  have  gone  in  a  given  unit  of  time,  rather  than  in 

the  times  which  are,  in  fact,  proportional  to  the  square  of  the  distance. 

So  these  represent  the  velocities  in  succession.  It  is  quite  difficult  in 

that  diagram  to  find  out  what  the  changes  are. 

I  therefore  make  another  diagram  over  here,  which  I’ll  call  the  dia¬ 
gram  of  the  velocities,  in  which  I  draw  a  picture  on  a  magnified  scale 

only  for  convenience.  These  are  supposed  to  represent  exactly  these 

same  lines.  This  would  represent  the  motion  per  second  of  a  particle  at 

/  or  in  a  given  interval  of  time,  at  J.  This  would  represent  the  motion 

that  a  particle  would’ve  made  from  the  beginning  in  a  given  interval  of 
time.  And,  I  put  them  all  at  a  common  origin,  so  that  I  can  compare 
the  velocities.  So  I  have  then  a  series  of  the  velocities  for  the  succession 

of  these  points. 
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Now,  what  are  the  changes  in  the  velocity?  The  point  is  that  in  the 

first  motion,  this  is  the  velocity.  However,  there  is  an  impulse  toward 

the  Sun,  and  so  there  is  a  change  in  velocity,  indicated  by  the  green 

line  that  produces  the  second  velocity,  vK.  Likewise,  there’s  another 
impulse  toward  the  Sun  again,  but  this  time  the  Sun  is  at  a  different 

angle,  which  produces  the  next  change  in  the  velocity,  vt,  and  so  on. 

Now,  the  proposition  that  the  changes  in  the  velocities  were  equal — 

for  equal  angles,  which  is  the  one  that  we  deduced — means  that  the 

lengths  of  these  succession  of  segments  are  all  the  same.  That’s  what it  means. 

And  what  about  their  mutual  angles?  Since  this  is  in  the  direction  of 

the  Sun  at  this  radius,  since  this  is  at  the  direction  of  the  Sun  at  that 

radius,  and  since  this  is  the  direction  of  the  Sun  at  that  radius,  and  so 

on,  and  since  these  radii  each  successively  have  a  common  angle  to 

one  another — so  it  is  likewise  true  that  these  little  changes  in  the  velocity 

have,  mutually  to  one  another,  equal  angles.  In  short,  we  are  con¬ 

structing  a  regular  polygon.  A  succession  of  equal  steps,  each  turn 

through  an  equal  angle,  will  produce  a  series  of  points  on  the  surface 

underlying  a  circle.  It  will  produce  a  circle.  Therefore,  the  end  of  the 

velocity  vector — if  they  call  it  that,  the  ends  of  these  velocity  points; 

you’re  not  supposed  to  know  what  a  vector  is  in  this  elementary  descrip¬ 
tion — will  lie  on  a  circle.  I  draw  the  circle  again. 
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I  review  what  we  found  out.  I  take  the  continuous  limit,  where  the 

intervals  of  angle  are  very  tiny  indeed,  to  obtain  a  continuous  curve. 

Let  0  be  the  angle,  total  angle,  to  some  point  P,  and  let  vP  represent 

the  velocity  of  that  point  in  the  same  way  as  before.  Then  the  diagram 

of  velocities  will  look  like  this.  This  is  the  origin  of  the  velocity  diagram, 

the  same  as  over  there,  and  this  is  the  velocity  vector  corresponding  to 

this  point  P.  Then  this  lies  on  a  circle,  but  always  not  necessarily  the 

center  of  that  circle.  However,  the  angle  that  you’ve  turned  through  in 
the  circle  is  the  same  0  as  here.  The  reason  for  that  is  that  the  angle 

turned  through  from  the  beginning  by  this  thing  is  proportional  to  the 

angle  turned  through  by  the  orbit,  because  it’s  the  succession  of  the 
same  number  of  small  angles.  And  therefore,  this  angle  in,  here,  is  the 

same  angle  as  in,  here. 

So  here  is  the  problem,  here’s  what  we  have  discovered:  that  if  we 
draw  a  circle  and  take  an  off-center  point,  then  take  an  angle  in  the 

orbit — any  angle  you  want  in  the  orbit — and  draw  the  corresponding 
angle  inside  this  constructed  circle  and  draw  a  line  from  the  eccentric 

point,  then  this  line  will  be  the  direction  of  the  tangent.  Because  the 

velocity  is  evidently  the  direction  of  motion  at  the  moment  and  is  in 

the  direction  of  the  tangent  to  the  curve.  So  our  problem  is  to  find  the 

curve  such  that  if  we  draw  a  point  from  an  eccentric  center,  the  direction 

of  the  tangent  of  that  curve  will  always  be  parallel  to  that  when  the 

angle  of  the  curve  is  given  by  the  angle  in  the  center  of  that  circle. 
In  order  to  make  still  clearer  why  it  is  going  to  come  out  in  this 

thing,  I’ll  turn  the  velocity  diagram  90°,  so  that  the  angles  correspond 
exactly  and  are  parallel  to  each  other.  This  diagram  under  here,  then, 

is  precisely  the  same  diagram  as  the  one  you  see  above,  but  turned 

90° — only  to  make  it  easier  to  think.  This,  then,  is  the  velocity  vector, 

except  that  it’s  turned  90°  because  the  whole  diagram  is  turned  90°. 
That  is,  this  is  perpendicular  evidently  to  that,  and  therefore  this  is 

evidently  perpendicular  to  that.  In  short,  we  must  find  the  curve  such 

that  if  we  put  the  orbit  in  it,  I  think  I’ve  started — yes,  so  I’ll  just  say 

it  and  then  I’ll  draw  it  again — if  we  put  the  orbit  in  it  at  a  given  point, 

here,  where  this  line  intersects  the  orbit  (never  mind  the  scales,  they’re 

all  imaginary,  I  mean,  it’s  all  in  proportion),  where  this  line  intersects 

the  orbit,  the  tangent  should  be  perpendicular  to  that  line  from  an  eccen¬ 

tric  point. 

(orbit  diagram) (velocity  diagram) 



162  FEYNMAN’S  LOST  LECTURE ‘The  Motion  of  Planets  Around  the  Sun’ 163 

I  draw  it  again,  to  show  you  how  it  is.  You  know  now  what  the 

answer  is.  But  here’s  a  picture  again  of  the  same  velocity  circle,  but 
this  time  the  orbit  is  drawn  inside  at  a  different  scale,  so  that  we  can 

see  this  picture  laid  right  over  this  picture,  so  the  angles  correspond. 

So  since  the  angles  correspond,  I  can  draw  the  single  line  to  represent 

both  the  point  P  on  the  orbit  and  the  point  p  on  the  velocity  circle.  Now 
what  we  have  discovered  is  that  the  orbit  is  of  such  a  character  that  a 

line  drawn  from  the  eccentric  point — here,  from  an  extension  of  this 

point  onto  a  circle  outside — will  always  be  perpendicular  to  the  tangent 
to  the  curve.  Now  that  curve  is  an  ellipse,  and  you  can  find  that  out  by 

the  following  construction. 

Construct  the  following  curve.  The  curve  I'm  going  to  construct  will 
satisfy  all  the  conditions.  Construct  the  following  curve.  Always  take 

the  perpendicular  bisector  of  this  line  and  ask  for  its  intersection  with  the 

other  line,  Cp,  and  call  that  intersection  point  P.  This  is  the  perpendicular 

bisector.  Now  I’ll  prove  two  things.  First,  that  the  locus  of  this  point 

that’s  been  generated  there  is  an  ellipse,  and,  second,  that  this  line  is 
a  tangent  there,  too — that  is,  to  the  ellipse — and  therefore  satisfies  the 
conditions,  and  all  is  well. 

First,  that  it’s  an  ellipse:  Since  this  was  the  perpendicular  bisector, 
it  is  at  equal  distances  from  O  and  p.  It  is  therefore  clear  that  Pp  is 

equal  to  PO.  That  means  that  CP  +  PO,  which  is  therefore  equal  to 

CP  +  Pp,  is  the  radius  of  the  circle,  which  is  evidently  constant.  So 

the  curve  is  an  ellipse,  or  the  sum  of  these  two  distances  is  a  constant. 

And  next,  this  line  is  tangent  to  the  ellipse  because,  since  ...  the 

two  triangles  are  congruent,  this  angle  here  is  equal  to  this  angle  here. 

this  angle  is  equal 
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But  if  I  extend  this  line  on  the  other  side,  [then]  also  is  that  angle  equal. 

So  therefore  the  line  in  question  makes  an  equal  angle  with  the  two 

lines  to  the  foci.  But  we  proved  that  that  was  one  of  the  properties  of  an 

ellipse — the  reflection  property.  Therefore,  the  solution  to  the  problem  is 

an  ellipse — or  the  other  way  around,  really,  is  what  I  proved:  that  the 

ellipse  is  a  possible  solution  to  the  problem.  And  it  is  this  solution.  So 

the  orbits  are  ellipses.  Elementary,  but  difficult. 

I  have  considerable  more  time,  and  so  I  will  say  a  few  things  about 

this.  In  the  first  place,  I  would  like  to  say  how  I  got  this  demonstration — 
the  fact  that  the  velocities  went  in  a  circle.  The  demonstration  [of]  this 

point  was  due  to  Mr.  Fano  and  I  read  it.  And  after  that,  to  prove  that 

it  was  an  ellipse  took  me  an  awful  long  time:  that  is,  the  obvious,  simple 

step — you  turn  it  this  way,  and  you  draw  that  and  all  that.  Very  hard, 
and  like  all  these  elementary  demonstrations  they  require  a  large 

amount — like  any  geometrical  demonstration — of  ingenuity.  But  once 

presented,  it’s  elegantly  simple.  I  mean,  it’s  just  finished.  But  the  fun 

of  it  is  that  you’ve  made  a  kind  of  a  carefully  put-together  piece  of 

pieces. 
It  is  not  easy  to  use  the  geometrical  method  to  discover  things.  It  is 

very  difficult,  but  the  elegance  of  the  demonstrations  after  the  discoveries 

are  made  is  really  very  great.  The  power  of  the  analytic  method  is  that 

it  is  much  easier  to  discover  things  than  to  prove  things.  But  not  in  any 

degree  of  elegance.  It’s  a  lot  of  dirty  paper,  with  x’s  and  y’s  and  crossed 
out,  cancellations  and  so  on. 

I  would  like  to  point  out  a  number  of  interesting  cases.  It  of  course 

can  happen  that  the  point  0  lies  on  the  circle,  or  even  that  the  point  0 

lies  outside  the  circle.  It  turns  out  that  the  point  O  lying  on  the  circle 

does  not  produce,  of  course,  an  ellipse;  it  produces  a  parabola.  And  the 

point  O  lying  outside  the  circle,  which  is  another  possibility,  produces 

a  different  curve,  a  hyperbola.  I  leave  some  of  those  things  for  you  to 

play  with.  On  the  other  hand,  I  would  like  now  to  make  some  application 

of  this  and  to  continue  the  argument  that  Mr.  Fano  originally  made,  for 

another  purpose.  He  was  going  in  a  different  direction,  and  I’d  like  to 
show  you  that. 

What  he  [Fano]  was  trying  to  do  was  to  make  an  elementary  demon¬ 
stration  of  a  law  which  was  very  important  in  the  history  of  physics  in 

1914.  And  that  had  to  do  with  the  so-called  Rutherford’s  law  of  scatter¬ 

ing.  If  we  have  an  infinitely  heavy  nucleus — which  we  don’t  have,  but 
suppose — and  if  we  shoot  a  particle  by  that  nucleus,  then  it  will  be 

repelled  by  an  inverse-square  law,  because  of  the  electrical  force.  If  qe 
is  the  charge  on  an  electron,  then  the  charge  on  the  nucleus  is  Z  times 

qr  when  Z  is  the  atomic  number.  Then  the  force  between  the  two  things 

is  given  by  4Tre0  times  the  square  of  the  distance,  which  for  simplicity 

I  will  write  temporarily  as  z//?2— the  constant  over  R 2.  I  don’t  know 

whether  you’ve  done  this  in  the  class  or  not;  but  I’ll  suppose,  I'll  define 

another  thing  because,  qt2  /  4it€0  will  be  written  e2  for  short.  Then  this 

thing  is  just  Ze 2  /  R2.  Anyway,  that’s  the  force  inversely  as  the  square 

of  the  distance,  but  it’s  a  repulsion.  And  now  the  problem  is  the  follow¬ 

ing:  If  I  shoot  a  lot  of  particles  at  these  nuclei,  where  I  can’t  see  the 
nuclei,  how  many  of  them  will  be  deflected  through  various  angles? 

What  percentage  will  be  deflected  more  than  30°?  What  percentage  will 

be  deflected  more  than  45°?  And  how  arc  they  distributed  in  angles? 
And  that  was  the  problem  that  Rutherford  wanted  solved,  and  when  he 

had  the  correct  solution,  he  then  checked  it  against  experiment. 

[At  this  point,  Feynman  goes  off  in  the  wrong  direction.  He’ll  correct himself  in  a  moment.] 

And  he  found  that  the  ones  that  were  supposed  to  be  deflected  through 

large  angles  were  not  there.  In  other  words,  the  number  of  particles 

deflected  through  large  angles  was  much  less  than  you  would  think, 

and  he  therefore  deduced  that  the  force  was  not  as  strong  as  MR1  for 
small  distances.  Because  it  is  obvious  that  to  get  the  large  angle,  you 

need  a  lot  of  force,  and  it  corresponds  to  the  [particles]  that  hit  [the 

nucleus]  almost  head-on.  So  those  which  come  very  close  to  the  nucleus 

do  not  seem  to  come  out  the  way  they  ought  to,  and  the  reason  is  that 

the  nucleus  has  a  size  .  .  .  I’ve  got  the  story  backwards.  If  the  nucleus 
had  a  big  size,  then  those  which  were  supposed  to  come  out  at  large 

angles  wouldn’t  get  their  full  force,  because  they  would  get  inside  the 
charge  distribution  and  would  be  deflected  less.  I  got  mixed  up.  Excuse 

me.  I  start  again. 

Rutherford  deduced  how  it  should  go  if  all  the  forces  were  concen¬ 
trated  at  the  center.  In  his  day,  it  was  supposed  that  the  charge  in  an 

atom  was  distributed  uniformly  over  the  atom,  and  in  order  to  discover 
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this  distribution,  he  thought  that  if  he  scattered  these  particles,  they 

would  show  a  weaker  deflection — they  would  never  show  a  very  large 

deflection  corresponding  to  a  veiy  close  approach  to  the  repulsion  center 

because  [in]  the  close  approach  there’s  no  center.  He,  however,  did 
find  the  large-angle  deflections,  and  deduced  that  the  nucleus  was  small 

and  that  the  atom  had  all  its  mass  at  a  very  small  central  point.  I  got  it 

backwards.  It  was  later  that  it  was  demonstrated,  by  the  same  thing 

again,  that  the  nucleus  has  a  size.  But  the  first  demonstration  was  that 

the  atom  is  not  as  big,  for  this  kind  of  electrical  purposes,  as  the  whole 

atom  is  known  to  be:  that  is,  all  the  charge  was  concentrated  at  the 

center,  and  thus  the  nucleus  was  discovered.  However,  we  need  now 

to  understand  this:  we  need  to  know  what  the  law  is  for  the  angle  of 

deflection  here,  and  that  we  can  obtain  in  this  way. 

Suppose  that  we  do  the  same  thing  as  we  did  before,  and  we  draw 

the  orbit.  Here  is  the  charge,  and  here  is  the  motion  of  a  particle  going 

around,  only  this  time  it’s  repulsion.  I  start  the  picture  at  this  point,  for 
the  fun  of  it,  and  I  draw  my  velocity  circles  as  before.  This  is  the 

velocity.  We  know  that  the  velocity,  the  initial  velocity  at  this  point — 

1  should  use  the  same  colors  so  you  know  what  I’m  doing,  this  should 
be  blue,  this  orbit  is  red — now  the  velocity  changes  lie  on  a  circle.  But 
the  changes  in  the  velocity  this  time  are  repulsions,  and  the  sign  is 

reversed.  And  after  some  minor  thought,  you  can  see  that  the  deflections 

go  like  that,  and  that  the  center  of  the  calculation  [which]  used  to  be 

called  the  origin  of  the  velocity  space  O ,  lies  on  the  outside  of  the 

circle.  And  the  succession  of  small  velocity  changes  lie  on  the  circle, 

and  the  succession  of  velocities  then  in  the  orbit  are  these  lines,  until 

a  very  interesting  point  comes:  until  we  get  to  this  tangent. 

At  this  tangent  point  to  the  curve — what  does  it  mean?  It  means  that 
all  the  changes  in  velocity  are  in  the  direction  of  the  velocity.  But  the 

changes  in  the  velocity  are  in  the  direction  of  the  Sun,  and  that  means 

that  this  velocity,  in  this  part  of  the  diagram,  is  in  the  direction  of  the 

Sun,  because  it  is  in  the  direction  of  the  changes.  That  is  to  say,  this 

point  here,  as  we  approach  this  point  here — which  I  could  call  x,  say — 

corresponds  to  coming  from  infinity  toward  the  Sun  along  a  line  here. 

That  is,  very  far  out  we  are  directed  toward  the  Sun  very  closely  (not 

the  Sun,  but  the  nucleus)  and  then  as  it  comes  around  here — this  diagram 

("oibit"  diagram)  (velocity  diagram) 

should  be  the  other  way.  the  arrows  should  be  here,  I  got  the  changes 

the  wrong  way  in  time — comes  around  here  and  goes  out  this  way  and, 

going  out  that  way,  corresponds  to  going  with  the  velocity  off  in  this 
direction. 

Now,  if  we  draw  then  the  orbit  more  carefully,  it  will  look  very 

much  like  this.  It  goes  around  like  this.  If  I  call  this  point,  here,  V* 

then  the  velocity  that  the  particle  has  at  the  beginning  is  V„.  If,  on  the 

same  scale,  I  call  the  radius  of  this  circle  V— the  velocity  corresponding 

to  the  radius  of  the  circle — I’m  going  to  make  up  some  equation,  I’m 
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not  going  to  do  it  completely  geometrically,  but  to  save  time  and  so 

on,  I’ve  done  all  the  work.  One  should  not  ride  in  the  buggy  all  the 
time.  One  has  the  fun  of  it  and  then  gets  out.  Now  first  I  want  to  find 

the  velocity  of  the  center,  the  radius  of  the  velocity  circle.  In  other 

words,  I’m  now  going  to  come  down  and  make  some  of  these  geometric 
things  more  analytic. 

I  will  suppose  that  the  force  is  some  constant:  the  force — the  accelera¬ 

tion,  rather — is  some  constant  over  R2.  For  gravity,  this  constant  is  GM 

and,  for  electricity,  it  is  Ze2lm,  over  m  because  of  the  acceleration.  That 

is  to  say,  the  changes  in  velocity  are  always  equal  to  z/R2  times  the 
time.  Now  let  us  suppose  that  we  call  a,  which  is  a  constant  for  the 

motion,  the  area  swept  by  the  orbit  per  second.  That  is  then  this  way: 

that  the  time — if  I  wanted  to  change  this  to  angle,  I  have  the  following — 

R2 A0  would  be  the  area.  If  I  divide  that  by  the  rate  that  area  is  swept 
through — this  tells  me  how  much  time  it  takes  to  sweep  an  angle.  The 

time  is,  then,  for  given  angles,  proportional  to  the  square  of  the  distance. 

All  this  I’m  saying  now  analytically,  where  I  said  in  words  before. 
Substitute  this  At,  in  here,  to  find  out  how  the  changes  in  the  velocity 

are  with  respect  to  angle,  and  one  obtains  R2 A0/a,  or  the  R2' s  cancel, 
and  it  means  that  the  changes  in  velocity  are  as  advertised:  for  equal 

angles,  equal. 

Now  then,  the  velocity  diagram — although  this  isn’t  the  piece  of  the 
orbit  that  you  can  get  to,  never  mind — these  are  changes  in  the  velocity 

and  these  are  changes  in  the  angle  in  the  orbit.  So  AV  is  also  equal  by 

the  geometry  of  that  circle  to  the  radius  of  the  circle,  which  I  call  VR 

x  AO.  In  other  words,  we  have  that  the  radius  of  the  velocity  circle  is 

equal  to  z/a,  where  a  is  the  rate  of  area  swept  per  second  and  z  is  a 

constant  having  to  do  with  the  law  of  force.  Now,  the  angle  through 

which  this  planet  has  deflected  is  this  one,  here,  and  I  call  it,  the  angle 

of  deflection  from  the  planet — I  mean  the  charged  particle  from  the 

nucleus.  It  is  evident  from  my  discussion  that  it’s  the  same  as  this  angle 
in  here,  4>,  because  these  velocities  are  parallel  to  the  two  original 

directions.  It  is  clear,  therefore,  that  we  can  find  4>  if  we  can  get  the 

relation  with  Vx  and  You  see,  look,  tangent  of  <|>/2  =  VR/V.X  and 

that  gives  us  the  angle.  The  only  thing  is  that  we  need — we  have  to 

substitute  for  VR,  z/a R,  and  we  have  that  much. 

Now,  it  doesn’t  do  us  much  good  until  we  know  a  for  this  orbit.  An 
interesting  idea  is  this:  think  of  this  thing  as  approaching  this,  so  that 

if  there  were  no  force  it  would  miss  by  a  certain  distance,  b.  This  is 

called  the  impact  parameter.  We  imagine  that  the  thing  comes  from 

infinity  aimed  for  the  force  center,  but  is  missing — because  it  misses, 

it  is  deflected.  By  how  much  is  it  deflected,  if  it  was  aimed  to  miss  by 

bl  That's  the  question.  If  it’s  aimed  to  miss  by  a  distance  b.  how  much 
will  it  get  deflected? 

So  I  need  now  only  determine  how  a  is  related  to  b.  V.,_  is  the  distance 

gone  in  1  second,  so  if  I  were  to  draw  way  out  here  a  horrible- looking 

area,  a  triangle — a  terrible-looking  triangle,  then  the — I  got  a  factor  of 

2  somewhere,  yeah,  the  area  of  a  triangle  is  1/2  R2.  There  are  two 
factors,  two,  which  you  will  straighten  out  please  when  the  time  comes. 

There  is  1/2  in  here  and,  there  is  1/2  somewhere  else,  which  I’m  now 
going  to  make.  The  area  of  this  triangle  is  the  base  Vx  times  the  height 

b  times  1/2.  Now  that  triangle  is  a  triangle  through  which  a  particle  would 

sweep — the  radius  would  sweep  in  1  second.  And  this  is,  therefore,  a. 

So,  therefore,  we  have  that  this  goes  as  z/bV2.  That  tells  us  that  given 
the  impact  distance,  the  aiming  accuracy,  what  angle  we  would  find  in 

the  deflection  in  terms  of  the  speed  at  which  the  particle  approaches 

and  the  known  law  of  force.  So  it’s  completely  finished. 
One  more  thing  that  is  rather  interesting.  Suppose  that  you  would 

like  to  know  with  what  probability,  what  chance  is  there  of  getting  a 

deflection  more  than  a  certain  amount.  Let’s  say  you  pick  a  certain  <t> — 

4>o.  say — and  you  want  to  make  sure  that  you  get  greater  than  <J>0.  That 
only  means  that  you  have  to  hit  inside  an  area  closer  than  the  b  which 

belongs  to  that  d>.  Any  collision  closer  than  b  will  produce  a  deflection 

bigger  than  t}>0,  where  b  is  b0,  belonging  to  <)>0  through  this  equation. 

If  you  come  further  away,  I  have  less  deflection,  less  force.  So,  there¬ 

fore.  the  so-called  cross  section  of  area  that  you  have  to  hit  for  deflection, 

to  be  greater  than  <i>  (I'll  leave  off  the  naught),  is  -nb2,  where  b  is  z/Vj 
tan2  <J>/2.  In  other  words,  it  is  t,z2!Vx  tan2  <t>/2.  And  that’s  the  law  of 

Rutherford’s  scattering.  That  tells  you  the  probability  of  the  area  you 
have  to  hit — the  effective  area  that  you  have  to  hit — in  order  to  get  a 

deflection  more  than  a  certain  amount.  This  z  is  equal  to  Ze2/m:  this  is 

a  fourth  power,  and  it  is  a  very  famous  formula. 
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II  is  so  famous  that,  as  usual,  it  was  noi  written  in  this  form  when 

it  was  first  deduced,  and  so  I.  just  for  the  famousness  of  it.  will  write 

it  in  a  form— well.  I’ll  leave  you  to  write  it  in  a  form.  1*11  write  just 

the  answer,  and  I'll  let  you  sec  if  you  can  show  it.  Instead  of  asking 
for  the  cross  section  for  a  deflection  greater  than  a  certain  angle,  we 

can  ask  for  the  piece  of  cross  section,  da,  that  corresponds  to  the 

deflection  in  the  range  d$  that  the  angle  should  be  between,  here,  and 

there.  You  just  have  to  differentiate  this  thing,  and  the  final  result  for 

that  thing  is  given  as  the  famous  formula  of  Rutherford,  which  is  4  ZV 

times  2rr  sin«J>  d<b  divided  by  4m:  Vm*  times  the  sine  of  the  fourth  power 

of  6/2.  This  I  write  only  because  it’s  a  famous  one  that  comes  up  very 
much  in  physics.  The  combination  2it  sin6  d6  is  really  the  solid  angle 
that  you  have  in  range  </6  So  in  a  unit  of  solid  angle,  the  cross  section 

goes  inversely  as  the  fourth  power  of  the  sine  of  6/2.  And  it  was  this 

law  which  was  discovered  to  be  true  for  scattering  of  a  particles  from 
atoms,  which  showed  that  the  atoms  had  a  hard  center  in  the  middle  .  .  . 

a  nucleus.  And  it  was  by  this  formula  that  the  nucleus  was  discovered. 

Thank  you  very  much. Richard  Feynman  conjured  up  his  own  brilliant  proof  of  the  law  of 
ellipses,  but  he  was  not  the  first  to  think  of  it.  The  same  proof,  right 

down  to  the  crucial  insight  of  turning  the  velocity  diagram  on  its  side, 

appears  in  a  little  book  called  Mailer  and  Motion .  written  by  James  Clerk 

Maxwell  and  first  published  in  1877.  Maxwell  attributes  the  method  of 
proof  to  Sir  William  Hamilton,  a  name  familiar  to  all  physicists.  (The 
Hamiltonian  is  a  crucial  clement  of  quantum  mechanics.)  Apparently. 

Hamilton  was  the  first  to  use  the  velocity  diagram,  which  he  called  the 

Hodograph.  to  study  the  motion  of  a  body.  In  his  lecture,  Feynman 

generously  credits  a  mysterious  "Mr.  Fano* '  with  the  idea  of  the  circular 
velocity  diagram.  He  is  referring  to  a  book  by  U.  Fano  and  L.  Fano. 

Basic  Physics  of  Atoms  and  Molecules  ( 1 959),  where  a  circular  velocity 

diagram  is  used  to  derive  the  Rutherford  scattering  law  presented  by 
Feynman  at  the  end  of  his  lecture.  If  Fano  and  Fano  knew  about  Hamilton 

and  his  Hodograph.  they  do  not  say  so. 

Hamilton  was  part  of  a  centuries- long  tradition  of  refining  Newton’s 
mechanics  into  formulations  of  ever  greater  sophistication  and  elegance. 

For  more  than  two  hundred  years  after  the  publication  of  the  Principia, 

the  universe  of  Newton  reigned  supreme.  Then,  early  in  the  twentieth 


